Кто открыл ядро в биологии. Ядро клетки: функции и структура. Передача наследственных признаков

Ядро – главное составляющее живой клетки, которое несет наследственную информацию, закодированную набором генов. Оно занимает центральное положение в клетке. Размеры варьируются, форма обычно сферичная или овальная. В диаметре ядро в разных клетках может быть от 8 до 25мкм. Есть исключения, примеру, яйцеклетки рыб имеют ядра диаметром в 1 мм.

Особенности строения ядра

Заполнено ядро жидкостью и несколькими структурными элементами. В нем выделяют оболочку, набор хромосом, нуклеоплазму, ядрышка. Оболочка двухмембранная, между мембранами находится перенуклеарное пространство.

Внешняя мембрана сходна по строению с эндоплазматическим ретикулумом. Она связана с ЭПР, который будто ответвляется от ядерной оболочки. Снаружи на ядре находятся рибосомы.

Внутренняя мембрана прочная, так как в ее состав входит ламина. Она выполняет опорную функцию и служит местом крепления для хроматина.

Мембрана имеет поры, обеспечивающие обменные процессы с цитоплазмой. Ядерные поры состоят из транспортных белков, которые поставляют в кариоплазму вещества путем активного транспорта. Пассивно сквозь поровые отверстия могут пройти только небольшие молекулы. Также каждая пора прикрыта поросомой, которая регулирует обменные процессы в ядре.

Количество ядер в разных по специализации клетках различно. В большинстве случаев клетки одноядерные, но есть ткани, построенные из многоядерных клеток (печеночная или ткань мозга). Есть клетки лишенные ядра – это зрелые эритроциты.

У простейших выделяют два типа ядер: одни отвечают за сохранение информации, другие – за синтез белка.

Ядро может прибывать в состоянии покоя (период интерфазы) или деления. Переходя в интерфазу, имеет вид сферического образования с множеством гранул белого цвета (хроматина). Хроматин бывает двух видов: гетерохроматин и эухроматин.

Эухроматин – это активный хроматин, который сохраняет деспирализированное строение в покоящемся ядре, способен к интенсивному синтезу РНК.

Гетерохроматин – это участки хроматина, которые находятся в конденсированном состоянии. Он может при необходимости переходить в эухроматиновое состояние.

При использовании цитологического метода окрашивания ядра (по Романовскому-Гимзе) выявлено, что гетерохроматин меняет цвет, а эухроматин нет. Хроматин построен из нуклеопротеидных нитей, названных хромосомами. Хромосомы несут в себе основную генетическую информацию каждого человека. Хроматин — форма существования наследственной информации в интерфазном периоде клеточного цикла, во время деления он трансформируется в хромосомы.

Строение хромосом

Каждая хромосома построена из пары хроматид, которые находятся параллельно друг к другу и связаны только в одном месте – центромере. Центромера разделяет хромосому на два плеча. В зависимости от длины плеч выделяют три вида хромосом:

  • Равноплечие;
  • разноплечие,
  • одноплечие.

Некоторые хромосомы имеют дополнительный участок, который крепится к основному нитевидными соединениями – это сателлит. Сателлиты помогают идентифицировать разные пары хромосом.

Метафазное ядро представляет собой пластинку, где располагаются хромосомы. Именно в эту фазу митоза изучается количество и строение хромосом. Во время метафазы сестринские хромосомы двигаются в центр и распадаются на две хроматиды.

Строение ядрышка

В ядре также находится немембранное образование — ядрышко. Ядрышки представляют собой уплотненные, округлые тельца, способные преломлять свет. Это основное место синтеза рибосомальной РНК и необходимых белков.

Число ядрышек различно в разных клетках, они могут объединяться в одно крупное образование или существовать отдельно друг от друга в виде мелких частиц. При активации синтетических процессов объем ядрышка увеличивается. Оно лишено оболочки и находится в окружении конденсированного хроматина. В ядрышке также содержатся металлы, в большей мере цинк. Таким образом, ядрышко – это динамичное, меняющееся образование, необходимое для синтеза РНК и транспорта ее в цитоплазму.

Нуклеоплазма заполняет все внутреннее пространство ядра. В нуклеоплазме находится ДНК, РНК, протеиновые молекулы, ферментативные вещества.

Функции ядра в клетке

  1. Принимает участие в синтезе белка, рибосомной РНК.
  2. Регулирует функциональную активность клетки.
  3. Сохранение генетической информации, точная ее репликация и передача потомству.

Роль и значение ядра

Ядро является главным хранилищем наследственной информации и определяет фенотип организма. В ядре ДНК существует в неизмененном виде благодаря репарационным ядерным ферментам, которые способны ликвидировать поломки и мутации. Во время клеточного деления ядерные механизмы обеспечивают точное и равномерное расхождение генетической информации в дочерние клетки.

Ядро есть только у эукариотических клеток. При этом некоторые из них его утрачивают в процессе дифференцировки (зрелые членики ситовидных трубок, эритроциты). У инфузорий есть два ядра: макронуклеус и микронуклеус. Бывают многоядерные клетки, возникшие путем объединения нескольких клеток. Однако в большинстве случаев в каждой клетке имеется только одно ядро.

Ядро клетки является самым крупным ее органоидом (если не считать центральные вакуоли клеток растений). Оно самое первое из клеточных структур, которое было описано учеными. Клеточные ядра обычно имеют шаровидную или яйцевидную форму.

Ядро регулирует всю активность клетки. В нем находятся хроматиды - нитевидные комплексы молекул ДНК с белками-гистонами (особенностью которых является содержание в них большого количества аминокислот лизина и аргинина). ДНК ядра хранит информацию о почти всех наследственных признаках и свойствах клетки и организма. В период клеточного деления хроматиды спирализуются, в таком состоянии они видны в световой микроскоп и называются хромосомами .

Хроматиды в неделящейся клетке (в период интерфазы) не полностью деспирализованы. Плотно спирализованные части хромосом называются гетерохроматином . Он располагается ближе к оболочке ядра. К центру ядра располагается эухроматин - более деспирализованная часть хромосом. На нем происходит синтез РНК, т. е. идет считывание генетической информации, экспрессия генов.

Репликация ДНК предшествует делению ядра, которое, в свою очередь, предшествует делению клетки. Таким образом, дочерние ядра получают уже готовую ДНК, а дочерние клетки - готовые ядра.

Внутреннее содержимое ядра отделяется от цитоплазмы ядерной оболочкой , состоящей из двух мембран (внешней и внутренней). Таким образом, ядро клетки относится к двумембранным органоидам. Пространство между мембранами называется перинуклеарным .

Внешняя мембрана в определенных местах переходит в эндоплазматическу сеть (ЭПС). Если на ЭПС располагаются рибосомы, то она называется шероховатой. Рибосомы могут размешаться и на наружней ядерной мембране.

Во множестве мест внешняя и внутренняя мембраны сливаются друг с другом, образуя ядерные поры . Их число непостоянно (в среднем исчисляются тысячами) и зависит от активности биосинтеза в клетке. Через поры ядро и цитоплазма обмениваются различными молекулами и структурами. Поры - это не просто дырки, они сложно устроены для избирательного транспорта. Их структуру определяют различные белки-нуклеопорины.


Из ядра выходят молекулы иРНК, тРНК, субчастицы рибосом.

В ядро через поры заходят различные белки, нуклеотиды, ионы и др.

Субчастицы рибосом собираются из рРНК и рибосомных белков в ядрышке (их может быть несколько) . Центральную часть ядрышка образуют специальные участки хромосом (ядрышковые организаторы ), которые располагаются рядом друг с другом. В ядрышковых организаторах содержится большое количество копий кодирующих рРНК генов. Перед клеточным делением ядрышко исчезает и вновь образуется уже во время телофазы.

Жидкое (гелеобразное) содержимое клеточного ядра называется ядерным соком (кариоплазмой, нуклеоплазмой) . Его вязкость почти такая же как у гиалоплазмы (жидкое содержимое цитоплазмы), однако кислотность выше (ведь ДНК и РНК, которых в ядре большое количество, - это кислоты). В ядерном соке плавают белки, различные РНК, рибосомы.

Ядро клетки - это одна из основных составных частей всех растительных и животных клеток, неразрывно связанная с обменом, передачей наследственной информации и др.

Форма ядра клетки варьирует в зависимости от типа клетки. Имеются овальные, шаровидные и неправильной формы - подковообразные или многолопастные ядро клетки (у лейкоцитов), четковидные ядра клетки (у некоторых инфузорий), разветвленные ядра клетки (в железистых клетках насекомых) и др. Величина ядра клетки различна, но обычно связана с объемом цитоплазмы. Нарушение этого соотношения в процессе роста клетки приводит к клеточному делению. Количество ядер клетки также неодинаково - большинство клеток имеет одно ядро, хотя встречаются двуядерные и многоядерные клетки (например, некоторые клетки печени и костного мозга). Положение ядра в клетке является характерным для клеток каждого типа. В зародышевых клетках ядро обычно находится в центре клетки, но может смещаться по мере развития клетки и образования в цитоплазме специализированных участков или отложения в ней резервных веществ.

В ядре клетки различают основные структуры: 1) ядерную оболочку (ядерную мембрану), через поры которой осуществляется обмен между ядром клетки и цитоплазмой [имеются данные, указывающие на то, что ядерная мембрана (состоящая из двух слоев) без перерыва переходит в мембраны эндоплазматической сети (см. ) и комплекса Гольджи]; 2) ядерный сок, или кариоплазму,- полужидкую, слабо окрашиваемую плазматическую массу, заполняющую все ядра клетки и содержащую в себе остальные компоненты ядра; 3) (см.), которые в неделящемся ядре видны только с помощью специальных методов микроскопии (на окрашенном срезе неделящейся клетки хромосомы обычно имеют вид неправильной сети из темных тяжей и зернышек, в совокупности называемых ); 4) одно или несколько сферических телец - ядрышек, являющихся специализированной частью ядра клетки и связанных с синтезом рибонуклеиновой кислоты и белков.

Ядро клетки обладает сложной химической организацией, в которой важнейшую роль играют нуклеопротеиды - продукт соединения с белками. В жизни клетки имеются два основных периода: интерфазный, или метаболический, и митотический, или период деления. Оба периода характеризуются главным образом изменениями в строении ядра клетки. В интерфазе ядро клетки находится в покоящемся состоянии и участвует в синтезе белков, регуляции формообразования, процессах секреции и других жизненных отправлениях клетки. В период деления в ядре клетки происходят изменения, приводящие к перераспределению хромосом и образованию дочерних ядер клетки; наследственная информация передается, таким образом, через ядерные структуры новому поколению клеток.

Ядра клетки размножаются только делением, при этом в большинстве случаев делятся и сами клетки. Обычно различают: прямое деление ядра клетки путем перешнуровки - амитоз и самый распространенный способ деления ядер клетки- типичное непрямое деление, или митоз (см.).

Действие ионизирующей радиации и некоторых других факторов способно изменять заключенную в ядре клетки генетическую информацию, приводя к различным изменениям ядерного аппарата, что иногда может приводить к гибели самих клеток или служить причиной наследственных аномалий у потомства (см. Наследственность), Поэтому изучение структуры и функций ядра клетки, особенно связей между хромосомными соотношениями и наследованием признаков, которыми занимается цитогенетика, имеет существенное практическое значение для медицины (см. ).

См. также Клетка.

Ядро клетки - важнейшая составная часть всех растительных и животных клеток.

Клетка, лишенная ядра или с поврежденным ядром, не способна нормально выполнять свои функции. Ядро клетки, точнее, организованная в его хромосомах (см.) дезоксирибонуклеиновая кислота (ДНК),- носитель наследственной информации, определяющей все особенности клетки, тканей и целого организма, его онтогенез и свойственные организму нормы реагирования на воздействия среды. Заключенная в ядре наследственная информация закодирована в составляющих хромосомы молекулах ДНК последовательностью четырех азотистых оснований: аденина, тимина, гуанина и цитозина. Эта последовательность является матрицей, определяющей структуру синтезируемых в клетке белков.

Даже самые незначительные нарушения структуры ядра клетки ведут к необратимым изменениям свойств клетки или к ее гибели. Опасность ионизирующих излучений и многих химических веществ для наследственности (см.) и для нормального развития плода имеет в своей основе повреждения ядер в половых клетках взрослого организма или в соматических клетках развивающегося эмбриона. В основе преобразования нормальной клетки в злокачественную также лежат определенные нарушения структуры ядра клетки.

Размеры и форма ядра клетки и соотношение его объема и объема всей клетки характерны для различных тканей. Одним из главных признаков, отличающих элементы белой и красной крови, являются форма и размер их ядер. Ядра лейкоцитов могут быть неправильной формы: изогнуто-колбасовидной, лапчатой или четковидной; в последнем случае каждый участок ядра соединен с соседним тонкой перемычкой. В зрелых мужских половых клетках (сперматозоидах) ядро клетки составляет подавляющую часть всего объема клетки.

Зрелые эритроциты (см.) человека и млекопитающих не имеют ядра, так как они теряют его в процессе дифференцировки. Они имеют ограниченный срок жизни и не способны размножаться. В клетках бактерий и сине-зеленых водорослей отсутствует резко очерченное ядро. Однако в них содержатся все характерные для ядра клетки химические вещества, распределяющиеся при делении по дочерним клеткам с такой же правильностью, как и в клетках высших многоклеточных организмов. У вирусов и фагов ядро представлено единственной молекулой ДНК.

При рассмотрении покоящейся (неделящейся) клетки в световом микроскопе ядро клетки может иметь вид бесструктурного пузырька с одним или несколькими ядрышками. Ядро клетки хорошо красится специальными ядерными красками (гематоксилин, метиленовый синий, сафранин и др.), которые обычно используют в лабораторной практике. При помощи фазово-контрастного устройства ядро клетки можно исследовать и прижизненно. В последние годы для изучения процессов, протекающих в ядре клетки, широко используют микрокинематографию, меченые атомы С14 и Н3 (ауторадиография) и микроспектрофотометрию. Последний метод особенно успешно применяют для изучения количественных изменений ДНК в ядре в процессе жизненного цикла клетки. Электронный микроскоп позволяет выявить детали тонкой структуры ядра покоящейся клетки, необнаруживаемые в оптическом микроскопе (рис. 1).

Рис. 1. Современная схема строения клетки, основанная на наблюдениях в электронном микроскопе: 1 - цитоплазма; 2 - аппарат Гольджи; 3 - центросомы; 4 - эндоплазматический ретикулум; 5 - митохондрии; 6 - оболочка клетки; 7 - оболочка ядра; 8 - ядрышко; 9 - ядро.


При делении клеток - кариокинезе или митозе (см.) - ядро клетки претерпевает ряд сложных преобразований (рис. 2), во время которых становятся отчетливо видимыми его хромосомы. Перед делением клетки каждая хромосома ядра синтезирует из веществ, присутствующих в ядерном соке, себе подобную, после чего материнская и дочерняя хромосомы расходятся к противоположным полюсам делящейся клетки. В результате каждая дочерняя клетка получает такой же хромосомный набор, какой был у материнской клетки, а вместе с ним и заключенную в нем наследственную информацию. Митоз обеспечивает идеально правильное разделение всех хромосом ядра на две равнозначные части.

Митоз и мейоз (см.) являются важнейшими механизмами, обеспечивающими закономерности явлений наследственности. У некоторых простейших организмов, а также в патологических случаях в клетках млекопитающих и человека ядра клетки делятся путем простой перетяжки, или амитоза. В последние годы показано, что и при амитозе происходят процессы, обеспечивающие разделение ядра клетки на две равнозначные части.

Набор хромосом в ядре клетки особи называют кариотипом (см.). Кариотип во всех клетках данной особи, как правило, одинаков. Многие врожденные аномалии и уродства (синдромы Дауна, Клайнфелтера, Тернера-Шерешевского и др.) обусловлены различными нарушениями кариотипа, возникшими либо на ранних стадиях эмбриогенеза, либо при созревании половой клетки, из которой возникла аномальная особь. Аномалии развития, связанные с видимыми нарушениями хромосомных структур ядра клетки, называют хромосомными болезнями (см. Наследственные болезни). Различные повреждения хромосом могут быть вызваны действием физических или химических мутагенов (рис. 3). В настоящее время методы, позволяющие быстро и точно устанавливать кариотип человека, используют для ранней диагностики хромосомных болезней и для уточнения этиологии некоторых заболеваний.


Рис. 2. Стадии митоза в клетках культуры ткани человека (перевиваемый штамм НЕр-2): 1 - ранняя профаза; 2 - поздняя профаза (исчезновение ядерной оболочки); 3 - метафаза (стадия материнской звезды), вид сверху; 4 - метафаза, вид сбоку; 5 - анафаза, начало расхождения хромосом; 6 - анафаза, хромосомы разошлись; 7 - телофаза, стадия дочерних клубков; 8 - телофаза и разделение клеточного тела.


Рис. 3. Повреждения хромосом, вызываемые ионизирующей радиацией и химическими мутагенами: 1 - нормальная телофаза; 2-4 - телофазы с мостами и фрагментами в эмбриональных фибробластах человека, облученных рентгеновыми лучами в дозе 10 р; 5 и 6 - то же в кроветворных клетках морской свинки; 7 - хромосомный мост в эпителии роговицы мыши, облученной дозой в 25 р; 8 - фрагментация хромосом в эмбриональных фибробластах человека в результате воздействия нитрозоэтилмочевиной.

Важный органоид ядра клетки - ядрышко - является продуктом жизнедеятельности хромосом. Оно продуцирует рибонуклеиновую кислоту (РНК), являющуюся обязательным промежуточным звеном в синтезе белка, вырабатываемого каждой клеткой.

Ядро клетки отделено от окружающей цитоплазмы (см.) оболочкой, толщина которой 60-70 Å.

Через поры в оболочке вещества, синтезируемые в ядре, поступают в цитоплазму. Пространство между оболочкой ядра и всеми его органоидами заполнено кариоплазмой, состоящей из основных и кислых белков, ферментов, нуклеотидов, неорганических солей и других низкомолекулярных соединений, необходимых для синтеза дочерних хромосом при делении ядра клетки.

ЯДРО КЛЕТКИ [nucleus (caryon) , LNH] - составная часть клетки, в которой сосредоточена основная масса ДНК, являющаяся носителем наследственной информации. Наличие оформленного ядра отличает эукариотные организмы (см.) от прокариотных организмов (см.), у которых аналогом ядра является структурно неотделенная от цитоплазмы (см.) кольцевая нить ДНК - нуклеоид.

Впервые ядро в яйцеклетке курицы наблюдал Я. Пуркинъе в 1825 году. Броун (R. Brown) в 1831 году установил, что ядро является неотъемлемой частью всех живых клеток. К концу 19 века сформировались представления о ядре как носителе наследственных свойств клетки. Создание хромосомной теории наследственности (см.), открытие матричной функции ДНК и расшифровка генетического кода (см.) привели к выработке современного взгляда на ключевую роль ядра в хранении, воспроизведении и реализации основной массы генетической информации клетки (см. Ген , Дезоксирибонуклеиновые кислоты , Наследственность).

В изучении структуры и функции ядра большую роль сыграли методы цитохим выявления ДНК, например, реакция Фейльгена (см. Дезоксирибонуклеиновые кислоты, гистохимические методы обнаружения в тканях), электронной микроскопии (см.), микрургии (см.), микрокиносъемки (см.), а также радиоизотопные и микро-электродные методы исследования (см.).

Клетка обычно содержит одно ядро, расположенное вблизи ее центра или в базальной части (в клетках желез, в высокопризматическом эпителии). Положение ядра в клетке фиксируется сетью фибриллярных структур, образующих цитоскелет (см. Цитоплазма). Такая фиксация допускает, в определенных пределах, вращательные и колебательные движения ядра. Двухъядерные и многоядерные клетки, как правило, образуются вследствие деления ядра без разделения цитоплазмы или же слияния клеток. Структуры, в которых в единой протоплазме содержится много (до нескольких сотен) ядер, называют симпластами (например, поперечнополосатые волокна миокарда).

Форма ядра чаще сферическая или эллипсоидная, в нек-рых клетках (напр., в лейкоцитах и инфузориях) ядра имеют неправильную форму (см. цветн. табл. к ст. Клетка , рис. 2-8). Диаметр ядра колеблется от 1 мкм (у некотрых простейших) до 1 мм (яйцеклетки некоторых животных). В клетках млекопитающих диаметр ядра равен 4-6 мкм. Соотношение объемов ядра и цитоплазмы - относительно постоянная величина для каждого типа клеток. В целом объем ядра является видовым признаком и зависит от содержания ДНК, белков и воды. При полиплоидизации хромосом (см. Мутация) или их политенизации (см. Хромосомы) объем ядер обычно увеличивается в геометрической прогрессии (правило Якоби). Вследствие содержания большого количества нуклеиновых кислот ядра клеток базофильны по окраске. В течение жизненного цикла клетки оформленные ядра сохраняются в интерфазе (см. Клетка). В период митоза ядро замещается конденсированными хромосомами, совокупность которые носит название «митотическое ядро». В период интерфазы в ядре клетки различают оболочку, ядрышко (см.), хроматин (см.), элементы структурного матрикса и различные гранулы и фибриллы. Гомогенное вещество, заполняющее пространство между этими структурами, называют ядерным соком, или кариолимфой.

Оболочка ядра является специализированной частью общей мембранной системы клетки. Она образована наружной и внутренней ядерными мембранами, каждая из которых имеет толщину около 8 нм. Мембраны разделены перинуклеарным пространством шириной около 25 нм (рис. 1), связанным с полостями эндоплазматического ретикулума (см.). На обращенной к цитоплазме поверхности наружной ядерной мембраны располагаются рибосомы. Наружная ядерная мембрана связана с мембранами эндоплазматического ретикулума.

Предполагают, что они могут развиваться друг из друга. Наружная ядерная мембрана образует также транспортные пузырьки, которые встраиваются в мембраны комплекса Гольджи. Нередко оболочка ядра образует выступы и инвагинацииг связывающие цитоплазматические структуры с ядерными; часть подобных инвагинаций может достигать поверхности ядрышка (см.).

Высокомолекулярные соединения (РНК), синтезирующиеся в ядре, транспортируются в цитоплазму через специальные поровые комплексы, или поросомы, ядерной оболочки. Типичная поросома представляет собой сложную систему белковых глобул и фибрилл. В месте расположения порового комплекса наружная и внутренняя ядерные мембраны сливаются, формируя так называемую аннулярную структуру диаметром 60 - 80 нм (рис. 1 и 2). По ее периферии с наружной и внутренней сторон расположено по 8 связанных между собой глобул диаметром около 25 нмг в центре поросомы расположена глобула диаметром 15-20 нм. Центральная глобула соединена с периферическими глобулами системой тонких фибрилл, образующих диафрагму порового комплекса. Внутри центральной глобулы предполагают наличие канала, через который из ядра в цитоплазму транспортируются молекулы РНК. Благодаря тому, что периферические глобулы выступают за пределы аннулярной структуры (рис. 3), общий диаметр поросомы достигает 120 нм.

Строение и число поровых комплексов варьирует в зависимости от типа клетки и ее функционального состояния; в клетках с высокой метаболической активностью поросомы могут занимать 25-50% поверхности ядра.

Оболочка и поровые комплексы образуют поверхностный аппарат ядра, осуществляющий двустороннее взаимодействие ядра и цитоплазмы. Непосредственно под оболочкой ядра клетки расположен слой плотного вещества толщиной около 180 нм - субмембранная плотная пластинка, являющаяся одним из элементов структурного матрикса ядра клетки. При митозе элементы плотной пластинки могут сохраняться на поверхности конденсированных хромосом.

С внутренней стороны плотная пластинка переходит в систему белковых фибрилл диаметром 2 нм, которые объединяются в фибриллы высших порядков диаметром до 20-30 нм, формируя вместе с плотной пластинкой структурный матрикс ядра. Белки структурного матрикса образуют основу ядрышка и, возможно, принимают участие в структурной организации и регуляции процессов синтеза и транспорта макромолекул внутри ядра.

Хромосомы (см.) в период интерфазы представлены хроматином (см.) - многокомпонентной структурой, в основе которой лежит комплекс ДНК с гистонами (см.). С помощью световой микроскопии можно идентифицировать только наиболее конденсированные участки хроматина - так называемый гетерохроматин. Декойденсированный невидимый в световой микроскоп хроматин, по-видимому, представляющий собой транскрибируемые в данный момент области хромосом (см. Транскрипция), называют эухроматином. По локализации различают несколько видов гетерохроматина - периферический, выявляемый по периферии ядра клетки, жоколоядрышковый, а также хромоцентры, или кариосомы,- скопления зерен и глыбок хроматина в отдельных участках кариоплазмы. В большинстве ядер клеток самок млекопитающих выявляются также тельца Барра, представляющие собой тетерохроматин одной из двух половых Х-хромосом, которая сохраняет конденсированное состояние в течение всей интерфазы (см. Половой хроматин). В связи с функциональными особенностями различают два типа гетерохроматина - конститутивный, или структурный, и факультативный. Конститутивный гетерохроматин постоянно находится в конденсированном состоянии. Предполагают, что он обеспечивает пространственную организацию хромосом и, возможно, участвует в регуляции активности генов (см. Ген). Факультативный гетерохроматин способен переходить в деконденсированное состояние и, по существу, представляет собой нетранскрибируемый в данный момент эухроматин.

Есть данные, что интерфазные хромосомы соединены определенными участками с плотной пластинкой и расположены в кариоплазме закономерно.

Ядрышки (см.) представляют собой зоны синтеза и накопления рибосомальных РНК в ядре.

В ядерном соке содержатся вода, белки (главным образом глобулины), липопротеиды и фосфопротеиды, нуклеотиды, неорганические соли и др., а также рибонуклеопротеиды и ферменты транскрипции и репликации ДНК (см. Полимеразы). Количество ядерного сока может изменяться в зависимости от функционального состояния клетки.

В клетке ядро и цитоплазма составляют неразрывное единство: ядро без цитоплазмы сохраняет жизнеспособность лишь на короткое время, безъядерные клетки (например, эритроциты млекопитающих) не делятся и живут ограниченный период времени. Экспериментальное удаление ядра ведет к гибели клетки; пересадка ядра может восстановить ее жизнеспособность. В ядре на матрицах ДНК синтезируются РНК, которые обеспечивают синтез белков в цитоплазме; этим определяется ход всех физиологических процессов в клетке. В свою очередь, цитоплазма обеспечивает жизнедеятельность ядра и равномерное распределение генетического материала между дочерними клетками (исключение составляют некоторые виды простейших, у которых аппарат деления полностью располагается внутри ядра).

Синтез РНК на матрицах хромосомных ДНК, или транскрипцию (см.), осуществляют три вида ферментов: РНК-полимераза I, обеспечивающая синтез рибосома льных РНК (см. Ядрышко); РНК-полимераза II,обеспечивающая синтез мРНК; РНК-полимераза III, обеспечивающая синтез всех 5S-PHK, как транспортной, так и рибосомной. Транскрибируемый хроматин находится в декон-денсированном состоянии. Предполагается, что деконденсация связана с действием негистоновых белков HMG14 и HMG17. Синтезирующиеся нити РНК объединяются с белками ядра в рибонуклеопротеидные комплексы (РНП). На электроно-граммах РНП выявляются в виде перихроматиновых фибрилл толщиной 3-5 нм, расположенных по периферии скоплений гетерохроматина, а также в виде окруженных светлым ореолом перихроматиновых гранул диаметром около 45 нм. Перихромати-новые гранулы, по-видимому, представляют собой готовые к выходу в цитоплазму молекулы РНП. В ядерном соке между скоплениями гетерохроматина встречаются группы интерхроматиновых гранул диаметром 20 - 25 нм и конгломераты фибрилл диаметром 40-60 нм. Предполагают, что эти гранулы и фибриллы также представляют собой РНП.

В ДНК хромосом закономерно чередуются транскрибируемые участки и нетранскрибируемые (спейсеры). В спейсерах расположены последовательности нуклеотидов, определяющие точку начала транскрипции (селекторы), эффективность транскрипции (модуляторы) и окончание транскрипции (терминаторы). Внутри транскрибируемых зон ДНК имеются также участки, не представленные в зрелой мРНК - интроны (см. Транскрипция).

В периоде Gx клеточного цикла (см. Клетка) хромосомы содержат двуспиральные цепи ДНК. Удвоение цепей ДНК - репликация (см.) происходит в периоде S. Репликация идет асинхронно в разных хромосомах и в разных участках одной хромосомы. Обычно вначале удваивается ДНК у хроматина, затем - гетерохроматина и в последнюю очередь - ДНК гетерохроматизированной Х-хромосомы. Ошибки в считывании информации при репликации ДНК обычно исправляются специальными ферментными системами репарации (см. Нуклеазы). Лишь небольшая часть ошибок может сохраняться и передаваться потомству клетки, что лежит в основе различного вида мутаций (см. Мутация). В ядре дробящихся бластомеров удвоение цепей ДНК протекает почти одновременно, и период S относительно краток. В более дифференцированных клетках асинхронность редупликации нарастает, и длительность периода S увеличивается. В ядрах некоторых клеток часть ДНК синтезируется в периоде G2, что имеет значение для мейоза (см.).

К началу периода G2 каждая хромосома состоит из двух хроматид, соединенных между собой в области центромеры (см. Хромосомы). В конце периода G2 начинается интенсивная конденсация хромосом, вследствие чего они становятся видимыми в световой микроскоп.

В конденсации, помимо гистонов, принимают участие белки структурного матрикса ядра - матриксины - и белковый фактор митотической конденсации хромосом, синтезируемый в цитоплазме. При необходимости особо плотной упаковки ДНК (например, в сперматозоидах) гистоны ядра заменяются еще более щелочными белками - протаминами и цистеинпротаминами.

После завершения периода G2 клетка вступает в митоз (см.), являющийся основным способом равномерного распределения генетического материала ядра между дочерними клетками.

Нарушения числа и структуры хромосом половых клеток приводят либо к утрате этими клетками способности к оплодотворению (см.), либо к развитию наследственных заболеваний (см. Наследственные болезни , Хромосомные болезни). Развивающиеся при действии ряда факторов (проникающее излучение, высокая температура, некоторые вирусные инфекции) изменения числа и структуры хромосом соматических клеток (например, лейкоцитов), как правило, ведут к гибели пораженных клеток с элиминацией их системой иммунологического контроля организма (см. Иммунитет). В некоторых случаях нарушения регуляции процессов репродукции могут привести к опухолевому росту и к малигнизации клеток (см. Опухоли).

При дифференцировке клеток, их старении, а также в условиях патологии может изменяться степень конденсации хроматина. При активизации или подавлении специфической функции клетки наблюдаются так называемое функциональное набухание или сморщивание ядра с сохранением его структуры. При некоторых вирусных инфекциях (герпес, корь, полиомиелит, аденовирусная инфекция) в ядрах пораженных клеток появляются специфические вирусные включения.

В зависимости от характера, интенсивности и продолжительности действия повреждающего агента, патологические изменения ядра могут быть обратимыми (см. Паранекроз) или необратимыми (см. Некроз). Конденсация хроматина в крупные плотные глыбки или в единую компактную массу с исчезновением ядрышка Называется кариопикнозом (см. Пикноз). Это явление наблюдается не только при патологии, но и в обычных физиологических условиях, например, при дифференцировке эритробластов костного мозга. Как правило, кариопикноз необратим, хотя в условиях эксперимента наблюдали восстановление исходных структуры и функции пикнотизированных ядер при их переносе в цитоплазму малодифференцированных клеток. К тяжелым необратимым изменениям ядра, сопряженным с гибелью клетки, относятся кариорексис - распад ядер-на отдельные плотные глыбки - и кариолизис (кариолиз) - выход содержимого ядра в цитоплазму с его последующим растворением. Пикноз, рексис и лизис ядра в настоящее время рассматриваются как последовательные стадии его разрушения; в их основе лежит активация клеточных гидролаз, в первую очередь, рибонуклеаз и дезоксирибонуклеаз, приводящая к деполимеризации нуклеиновых кислот. Патологические изменения ядра могут возникать также в результате его отека - избыточного накопления жидкости в ядерном соке, что может привести к разрыву оболочки ядра.

Библиогр.: Беридзе Т. Г. Сателлит-ные ДНК, М., 1982; Клеточное ядро, Морфология, физиология и биохимия, под ред. И. Б. Збарского и Г. П. Георгиева, М., 1972; Клеточное ядро и его ультраструктуры, под ред. И. Б. Збарского, М., 1970; Метаболизм клеточного ядра и ядерно-ци-то плазматические отношения, под ред. В. П. Зосимовича и др., Киев, 1970; Me ц~ лер Д. Э. Биохимия, Химические реакции в живой клетке, пер. с англ., т. 1-3, М., 1980; Свенсон К. и Уэбстер П. JI. Клетка, пер. с англ., М., 1980; Стент Г. С. и Кэлин-д а р Р. Молекулярная генетика, пер. с англ., М., 1981; Ченцрв Ю. С. и Поляков В. Ю. Ультраструктура клеточного ядра, М., 1974, библиогр.; Alberts В. а. о. Molecular biology of the cell, N. Y. - L.. 1983; The cell nucleus, ed. by H. Busch, v. 1-4, N. Y.- L., 1974.-1978. См. также библиогр. к ст. Клетка .

ЯДРО (в биологии) ЯДРО (в биологии)

ЯДРО́ (клеточное ядро), в биологии - обязательная часть клетки у многих одноклеточных и всех многоклеточных организмов. Размеры от 1 мкм (у некоторых простейших) до 1 мм (в яйцах некоторых рыб и земноводных). Все организмы нашей биосферы как одноклеточные, так и многоклеточные, подразделяются на эукариот (см. ЭУКАРИОТЫ) - их клетки содержат ядро, и прокариот (см. ПРОКАРИОТЫ) , клетки которых не имеют морфологически оформленного ядра. Термин «ядро» (лат. nucleus) впервые применил Р. Броун (см. БРОУН Роберт (ботаник)) в 1833 году, когда описывал шарообразные структуры, наблюдаемые им в клетках растений.
Ядерная оболочка
Внутреннее пространство клеточного ядра отделено от цитоплазмы ядерной оболочкой, состоящей из двух мембран. Мембраны оболочки ядра сходны по строению с другими мембранными компонентами клетки и построены по тому же принципу: это тонкие липопротеидные пленки, состоящие из двойного слоя липидных молекул, в который встроены молекулы белков. Пространство между внутренней и внешней ядерными мембранами называется перинуклеарным. На поверхности внешней ядерной мембраны обычно располагается большое количество рибосом (см. РИБОСОМЫ) , и иногда удается наблюдать непосредственный переход этой мембраны в систему каналов гранулярной эндоплазматической сети клетки. Внутренняя ядерная мембрана связана с тонким волокнистым белковым слоем - ядерной ламиной, состоящей из белков ламинов. Густая сеть фибрилл ядерной ламины способна обеспечить целостность ядра, даже после растворения липидных мембран оболочки ядра в эксперименте. С внутренней стороны к ламине крепятся петли хроматина, заполняющего ядро.
Ядерная оболочка имеет отверстия диаметром около 90 нм, образующиеся засчет слияния внешней и внутренней ядерных мембран. Такие отверстия в оболочке ядра окружены сложными белковыми структурами, получившими название комплекса ядерной поры. Восемь белковых субъединиц, входящих в состав ядерной поры, располагаются вокруг перфорации ядерной оболочки в виде колец, диаметром около120 нм, наблюдаемых в электронный микроскоп с обеих сторон ядерной оболочки. Белковые субъединицы комплекса поры имеют выросты, направленные к центру поры, где иногда видна «центральная гранула» диаметром 10-40 нм. Размер ядерных пор и их структура стандартны для всех клеток эукариот. Число ядерных пор зависит от метаболической активности клеток: чем выше уровень синтетических процессов в клетке, тем больше пор на единицу площади поверхности клеточного ядра. В процессе ядерно-цитоплазматического транспорта ядерные поры функционируют как некое молекулярное сито, пропуская ионы и мелкие молекулы (сахара, нуклеотиды, АТФ и др.) пассивно, по градиенту концентрации, и осуществляя активный избирательный транспорт крупных молекул белков и рибонуклеопротеидов, то есть комплексов рибонуклеиновых кислот (РНК) с белками. Так, например, белки, транспортируемые в ядро из цитоплазмы, где они синтезируются, должны иметь определенные последовательности примерно из 50 аминокислот, (т. наз. NLS последовательности), «узнаваемые» комплексом ядерной поры. В этом случае комплекс ядерной поры, затрачивая энергию в виде АТФ, активно транслоцирует белок из цитоплазмы в ядро.
Хроматин
Клеточное ядро является вместилищем практически всей генетической информации клетки, поэтому основное содержимое клеточного ядра - это хроматин: комплекс дезоксирибонуклеиновой кислоты (ДНК) и различных белков. В ядре и, особенно, в митотических хромосомах, ДНК хроматина многократно свернута, упакована особым образом для достижения высокой степени компактизации. Ведь все длинные нити ДНК, общая длина которых составляет, например, у человека около 164 см, необходимо уложить в клеточное ядро, диаметр которого всего несколько микрометров. Эта задача решается последовательной упаковкой ДНК в хроматине с помощью специальных белков. Основная масса белков хроматина - это белки гистоны, входящие в состав глобулярных субъединиц хроматина, называемых нуклеосомами. Всего существует 5 видов белков гистонов. Нуклеосома представляет собой цилиндрическую частицу, состоящую из 8 молекул гистонов, диаметром около 10 нм, на которую «намотано» чуть менее двух витков нити молекулы ДНК. В электронном микроскопе такой искусственно деконденсированный хроматин выглядит как «бусины на нитке». В живом ядре клетки нуклеосомы плотно объединены между собой с помощью еще одного линкерного гистонового белка, образуя так называемую элементарную хроматиновую фибриллу, диаметром 30 нм. Другие белки, негистоновой природы, входящие в состав хроматина обеспечивают дальнейшую компактизацию, т. е. укладку, фибрилл хроматина, которая достигает своих максимальнах значений при делении клетки в митотических или мейотических хромосомах. В ядре клетки хроматин присутствует как в виде плотного конденсированного хроматина, в котором 30 нм элементарные фибриллы упакованы плотно, так и в виде гомогенного диффузного хроматина. Количественное соотношение этих двух видов хроматина зависит от характера метаболической активности клетки, степени ее дифференцированности. Так, например, ядра эритроцитов птиц, в которых не происходит активных процессов репликации и транскрипции, содержат практически только плотный конденсированный хроматин. Некоторая часть хроматина сохраняет свое компактное, конденсированное состояние в течение всего клеточного цикла - такой хроматин называется гетерохроматином и отличается от эухроматина рядом свойств.
Репликация и транскрипция
Клетки эукариот содержат обычно несколько хромосом (от двух до нескольких сотен), которые теряют в ядре (в интерфазе, т. е. между митотическоми делениями) клетки свою компактную форму, разрыхляются и заполняют объем ядра в виде хроматина. Несмотря на деконденсированное состояние, каждая хромосома занимает в ядре строго определенное положение и связана с ядерной оболочкой посредством ламины. Строго закреплены на внутренней поверхности оболочки ядра такие структуры хромосом, как центромеры и теломеры. На определенной стадии жизненного цикла клетки, в синтетическом периоде, происходит репликация, т. е. удвоение всей ДНК ядра, и хроматина становится в два раза больше. Белки, необходимые для этого процесса, поступают, конечно, из цитоплазмы через ядерные поры. Таким образом, клетка готовится к предстоящему клеточному делению - митозу, когда общее количество ДНК в ядре вернется к первоначальному уровню.
Реализация генетической информации, заключенной в ДНК в виде генов, начинается с транскрипции, т. е. с синтеза информационных РНК (и-РНК) - точных копий генов, по которым затем будут строиться в цитоплазме на рибосомах белки. Этот процесс проходит в различных точках в обьеме ядра, морфологически ничем не отличающихся от окружающего хроматина. Чаще всего удается наблюдать транскрипцию диффузного, т.е. деконденсированного хроматина.
Кроме хроматина, составляющего хромосомы, в ядрах эукариот обычно содержится одно или несколько ядрышек. Это плотные структуры, не имеющие собственной оболочки и представляющие собой скопления молекул другого типа РНК - рибосомной РНК (р-РНК) в комплексе с белками. Такие комплексы называют рибонуклеопротеидами (РНП). Ядрышки имеют стандартную морфологию и образуются в ядре после деления клетки вокруг постояннодействующих точек активного синтеза рибосомной РНК. Гены рибосомной РНК, в отличие от большинства других генов, кодирующих белки, содержатся в геноме в виде многочисленных копий. Эти копии, расположенные в молекуле ДНК тандемно, т. е. друг за другом, располагаются в определенных районах нескольких хромосом генома. Такие районы хромосом называют ядрышковыми организаторами. Морфологически в ядрышке с помощью электронного микроскопа можно выделить следующие 3 зоны: гомогенные компактные фибриллярные центры, содержащие ДНК ядрышковых организаторов; плотный фибриллярный компонент вокруг них, где идет транскрипция генов рибосомной РНК и массивный гранулярный компонент ядрышка, состоящий из частиц РНП - будущих рибосом. Эти гранулы РНП, образующиеся в ядрышке, транспортируются в цитоплазму и образуют рибосомы, осуществляющие синтез всех белков клетки. Третий основной тип клеточных РНК - мелкие транспортные РНК - транскрибируются в различных участках ядра и выходят в цитоплазму через ядерные поры. Там они, как известно, обеспечивают транспортировку аминокислот к рибосомам в процессе синтеза белков.
Ядерный белковый матрикс
Для осуществления процессов репликации, транскрипции, а также поддержания определенного положения хромосом в обьеме ядра существуют каркасные белковые структуры, называемае ядерным белковым матриксом. Такой матрикс состоит, по крайней мере из трех морфологических компонентов: периферического фиброзного слоя- ламины; внутреннего, или интерхроматинового матрикса ядра и матрикса ядрышка. Наблюдения показывают, что компоненты ядерного матрикса - это не жесткие застывшие структуры, они динамичны и могут сильно видоизменяться в зависимости от функциональных особенностей ядер. Показано, что белковый матрикс имеет множество точек прочного связывания с ДНК ядра, которая, в свою очередь, имеет специальные последовательности нуклеотидов, необходимые для этого.


Энциклопедический словарь . 2009 .

Смотреть что такое "ЯДРО (в биологии)" в других словарях:

    ЯДРО, в биологии, ограниченная мембраной часть большинства КЛЕТОК. Содержит ХРОМОСОМЫ. Т. к. ядро содержит генетический материал, оно является необходимым для поддержания клеточных процессов. В ядре производятся РНК, которые используются для… … Научно-технический энциклопедический словарь

    В биологии обязательная часть клетки у многих одноклеточных и всех многоклеточных организмов. Типичное ядро отделено от окружающей цитоплазмы оболочкой, содержит ядрышко, хромосомы и кариоплазму. Размеры от 1 мкм (у некоторых простейших) до 1 мм… … Большой Энциклопедический словарь

    Ядро нечто центральное и самое важное, часто круглое. Это слово имеет различные значения в разных областях: Содержание 1 Ядерная физика 2 Биология 3 Науки о Земле 4 Спорт … Википедия

    - (nucleus), обязательная часть клетки у мн. одноклеточных и всех многоклеточных организмов. По наличию или отсутствию в клетках оформленного Я. все организмы делят соответственно на эукариот и прокариот. Осн. отличия заключаются в степени… … Биологический энциклопедический словарь

    ядро и периферия - ЯДРО И ПЕРИФЕРИЯ пара взаимосвязанных понятий, вводимая для понимания сути классификаций. Ядро множества основная масса его элементов, компактная в пространстве признаков, а его периферия совокупность разрозненных элементов, проявляющих… … Энциклопедия эпистемологии и философии науки



О заболевании