Клон мамонта по-якутски: "живая" клетка в обмен на технологии из Кореи. Можно ли клонировать мамонта? Вердикт ученых: нет! Клонирование мамонта

Лаборатория Гарварда и компания Sooam Biotech из Южной Кореи обещают воскресить мамонта в ближайшее время.

Репродуктивное клонирование — это воспроизведение в лабораторных условиях точной генетической копии вымершего существа. Ядро клетки, которое содержит ДНК вымершего животного, помещают его в безъядерную яйцеклетку самки ближайшего родственника, затем — в матку живого животного. Если все пойдет хорошо, на свете появится маленький клон. Но как получить ДНК вида, вымершего тысячи лет назад? Тут пути лабораторий расходятся.

Парк Ледникового периода

Экспресс-инфо по стране

Республика Корея – государство в Восточной Азии, расположенное на Корейском полуострове.

Столица – Сеул

Крупнейшие города : Сеул, Пусан, Инчхон, Кванджу, Тэгу, Тэджон, Ульсан

Форма правления – Президентская республика

Территория – 100210 км 2 (109-я в мире)

Население – 51,43 млн чел. (27-я в мире)

Официальный язык – корейский

Религия – христианство, буддизм

ИЧР – 0,898 (17-я в мире)

ВВП – $1,410трлн (13-я в мире)

Валюта – южнокорейская вона

Граничит с: КНДР

Sooam Biotech приобрела известность, как компания, специализирующаяся на клонировании домашних питомцев, в основном, собак. В 2016 г. южнокорейская компания объявила о намерении сотрудничать с Китайским Генетическим Банком и Новосибирским университетом, собираясь возродить мамонта. При этом для корейцев исключительно важно контактировать с учеными из Сибири, поскольку они надеются, что в вечной мерзлоте смогут отыскать тушу ископаемого гиганта, из которой можно выделить ДНК — примерно так, как это произошло в «Парке Юрского периода».

ДНК — хрупкая молекула, которая разрушается после смерти, хоть и не сразу. Sooam требует от клиентов, обращающихся к ним с просьбой клонировать питомца, предоставить им биопсию, взятую до или сразу после смерти, и запрещает помещать тело в морозильник. Тела мохнатых гигантов слишком долго находились в подземном “морозильнике” Сибири, в течение 10 тыс. лет. Так что задача поиска неповрежденной ДНК ужасно сложна.

Как омохнатить слоненка

Ученые Гарварда, в частности Джордж Черч, решили пойти другим путем. Свой план всемирно известный генетик подробно изложил в книге «Мамонт: правдивая история возрождения одного из культовых существ древней истории». В феврале этого года его лаборатория заявила, что сможет клонировать мамонта в течение двух лет. Это было настолько дерзкое заявление, что его даже сочли фейком.

Самка индийского слона вынашивает малыша в течение 22 месяцев. И у лаборатории Черча есть минус 6 месяцев, чтобы выполнить свое обещание в срок. Однако, ученый парирует, что не заявлял о выдаче на-гора живого животного — только клетки. Он собирается вмешаться в геном живого слона, разбавив его генами косматости и морозоустойчивости.

Кто из ученых оживит мамонта и как быстро это произойдет? В любом случае, возрождение доисторического гиганта станет историческим событием.

Их привезли из Южной Кореи в качестве подарка Северо-Восточному федеральному университету (СВФУ). Все три псины — клоны. Они были созданы из клеток лучшей в Корее собаки-ищейки (а потому должны унаследовать её качества) в лаборатории профессора Хван У Сока , учёного с амбициозными планами. Совместно с российскими коллегами он собирается клонировать вымерших животных ледникового периода, в первую очередь мамонтов.

Не порвите днк!

В Музее мамонта перед огромным скелетом стоят мужчина и мальчик лет семи. «Пап, а это правда, что учёные хотят оживить мамонта?» — «Получается, да». — «Но как они это сделают? От него же одни кости остались!»

Пока малыш пытает вопросами неосведомлённого в науке отца, четырьмя этажами выше, в центре «Молекулярная палеон-тология», сотрудники уникальной лаборатории внимательно изучают то, что не могут видеть посетители музея, — мягкие ткани мамонтихи, найденной в 2013 г. на острове Малый Ляховский в Северном Ледовитом океане. Когда участники экспедиции обнаружили её останки, они не поверили своим глазам: ткани отлично сохранились — мягкие, красного цвета. А когда киркой пробили ледяные пустоты вокруг тела, оттуда потекла тёмно-красная жидкость, которая оказалась кровью животного, погибшего более 43 тыс. лет назад. Эксперты нашли в ней лейкоциты и гемоглобин.

«Но для клонирования кровь всё равно непригодна. Надо искать в мышечных тканях живые клетки, — говорит Семён Григорьев, директор Музея мамонта, главный научный сотрудник СВФУ . — Найти ядро клетки с сохранившейся ДНК — первая задача нашего проекта. В своё время мы сотрудничали с японцами, они провели в Якутии три экспедиции, надеялись найти живой сперматозоид мамонта и оплодотворить им слониху. Но это вообще затея нереальная. А потом на нас вышли корейцы. Профессор Хван У Сок сказал, что давно мечтает клонировать мамонта. У него большой опыт клонирования животных. Корейцы обеспечили нас оборудованием, которое ищет живые клетки в тканях ископаемых животных. Теперь у нас единственный в России научный центр, который занимается подобными исследованиями».

Если удастся найти живую клетку древнего гиганта, из неё извлекут ядро и пересадят его в яйцеклетку слонихи. Затем стимулируют начало деления и поместят эмбрион в матку слонихи, которой предстоит стать суррогатной матерью мамонтёнка. Всё выглядит красиво, однако сложностей хоть отбавляй.

«Маловероятно, что мамонты замерзали специальным способом, заботясь об учёных, которые захотят в будущем их клонировать. От долгого нахождения в мерзлоте клетка теряет целостность, то же касается ДНК в её ядре, — поясняет Сергей Киселёв, профессор Института общей генетики РАН, доктор биологических наук . — Молекула ДНК распадается на части, а для клонирования нужен полный геном. Наверное, если долго искать, то среди десятков тысяч триллионов клеток можно найти одну, где все нити ДНК будут целыми. Ничего антинаучного в этом нет. Но этого будет мало. Надо, чтобы нити в ядре были “упакованы” определённым образом».

Наконец, немало проблем с тем, как извлечь яйцеклетку из слонихи, а затем, оплодотворённую, поместить её обратно. Да и после этого остаётся надеяться на авось — эмбрион может не прижиться.

Коллаж АиФ/ Андрей Дорофеев

«Фокус» со слоном

Однако учёные не унывают: есть ещё один способ возродить мамонтов помимо классического клонирования. Это метод «сшивания ДНК».

«Он более перспективен, хотя выглядит фантастически, — уверен Альберт Протопопов, завотделом изучения мамонтовой фауны Академии наук Республики Саха (Якутия) . — В чём суть? Раз в нашем распоряжении будут обрывки нитей ДНК, значит, их можно попытаться сшить воедино. Или взять геном индийского слона и скорректировать его так, чтобы он стал похож на геном мамонта. Американским учёным уже кое-что удалось».

Генетики из Гарварда предложили технологию, с помощью которой можно удалять и заменять фрагменты ДНК в геноме животных. Используя методику, они успешно вставили в геном клеток слоновьей кожи те гены мамонта, которые предположительно отвечают за его типичные признаки — маленькие уши, толстый слой подкожного жира, длинную шерсть, бурый цвет. И «фокус» удался — клетки пережили трансформацию! Руководитель исследований Джордж Чёрч заявил, что мохнатые гиганты с хоботами могут вернуться на Землю уже через 7-10 лет.

Возникает вопрос: если мамонт вернётся в природу, где он будет жить? На северо-востоке Якутии его уже ждут. С конца 1980-х там реализуют уникальный научный проект «Плейстоценовый парк». Цель — восстановить «мамонтовую степь», которая когда-то кормила многомиллионные стада травоядных. Да-да, на месте безжизненной тундры 10 тыс. лет назад простирались сочные луга, похожие на африканские саванны, где обитали шерстистые носороги, бизоны, овцебыки, те же мамонты. Они питались травой и возвращали в почву (в виде навоза) необходимую растениям органику. А когда человек истребил зверьё, исчезла и степь, уступив место болотистой тундре.

Сейчас учёные заселили территорию огромного парка якутскими лошадьми, северными оленями, лосями, зубрами... Не хватает хозяина этих земель — мамонта. Причём специалисты рассчитали: воссоздание «мамонтовых степей» на нашем Севере приостановит выделение метана из болот и озёр, а значит, притормозит процесс глобального потепления, угрожающий всей планете!

«Человек виноват перед мамонтом. А ошибки надо исправлять, — говорит мне на прощание Семён Григорьев. — Поверьте, когда-нибудь мы обязательно его вернём».

Мамонты Mammuthus

Класс — млекопитающие
Отряд — хоботные
Семейство — слоновые

Мамонты появились около 4,8 миллиона лет назад. Эти покрытые шерстью слоны питались травой и ветками и съедали до 300 килограммов пищи в день. Мамонты проводили в поисках пищи 18 часов в сутки. Гиганты вымерли около 4 000 лет назад. Многие специалисты уверены, что наши предки активно «помогли» этим животным исчезнуть.

Останки животного извлекли в мае 2013 года сотрудники якутского Музея мамонта на острове Малый Ляховский в Северном Ледовитом океане, между морем Лаптевых и Восточно-Сибирским морем. Судя по всему, животное упало в водоем, замерзло и с тех пор не размораживалось. Благодаря этому ткани мамонтихи были красными, хотя обычно у образцов такого возраста они выглядят как серые куски породы. Более того, когда один из ученых случайно пробил кайлом тушу, потекла жидкость темно-красного цвета.

Учитывая удивительную сохранность останков, исследователи надеются отыскать клетки с неповрежденными ядрами. Если им это удастся, не исключено, что в 2045 году на севере Якутии снова будут бродить мамонты, клонированные из погибшей самки.

Говорящие митохондрии

В представлении большинства палеонтологи сначала ищут кости, а потом, как мозаику, собирают из них скелеты вымерших животных. Однако в случае мамонтов это уже давно не так. По словам руководителя якутского Музея мамонта Семена Григорьева, морфология мамонта давно изучена и все нужные кости найдены. Сегодня исследователи в первую очередь изучают молекулярную генетику ископаемых слонов.

Главное достижение новой палеонтологии — почти полная расшифровка ядерного генома мамонта. Григорьев не исключает, что уже в 2013 году эта работа, которую ведет группа Хендрика Пойнара из канадского университета Макмастера, будет завершена. Изучая гены древних слонов, специалисты смогут узнать о них все что угодно. Например, недавно стало известно, что среди мамонтов были блондины, брюнеты и рыжие.

Семь лет назад российские генетики во главе с Евгением Рогаевым выяснили последовательность митохондриального генома мамонта. Митохондрии — это клеточные компоненты, отвечающие за выработку энергии. Когда-то они были свободноживущими бактериями и с тех времен сохранили собственную ДНК. Сравнение геномов митохондрий разных видов животных позволяет уточнить, как давно разошлись их ветви на эволюционном древе.

Разобрать по косточкам

Из костей ископаемых животных можно вытянуть массу интересного. В туше могут сохраниться микроорганизмы, которые обитали на планете тысячелетия назад, а теперь исчезли. Остатки пищи во рту и пищеварительном тракте «расскажут» о растительности того периода. Наконец, изучая кости мамонтов, можно узнать новое и о наших предках. К примеру, молдавский ученый Теодор Обадэ, который проводил раскопки почти в цент ре Кишинева, обнаружил локтевую кость мамонта, пробитую копьем (всего в мире три таких находки), и наконечники орудий, сделанные из мамонтовых ребер.

Пакт о клонировании

С тех пор как на свет появилась овечка Долли, ученые могут не только изучать ДНК вымерших животных, но и — теоретически — возрождать их, используя сохранившиеся клетки. Из-за разных сложностей (в первую очередь плохой сохранности древних образцов) успехи исследователей по восстановлению исчезнувших видов довольно скромные. Например, в 2003 году ученые клонировали вымирающего азиатского быка бантенга, используя клетки животных, погибших за четверть века до того. Родилось два теленка, но одного специалисты умертвили для исследований, а второй жив до сих пор. В 2009 году родился клонированный детеныш вымершего к 2000 году испанского козла букардо (Capra pyrenaica pyrenaica). Однако прожил он (точнее, она — это была самка) всего семь минут. И это самые успешные эксперименты. Тем не менее в 2012 году якутские и корейские ученые подписали соглашение о сотрудничестве в области клонирования мамонта. Совместный проект Института прикладной экологии Севера Северо-Восточного федерального университета и корейского фонда биотехнологических исследований Sooam назвали амбициозно: «Возрождение мамонта». Но даже оптимисты из числа участников не скрывают, что работа займет десятилетия. Однако исследователи полны решимости: российские ученые в этом году открывают молекулярно-генетическую лабораторию в Якутске, где хранятся все найденные останки, а корейцы обеспечат сами работы по клонированию.

Отвечать за возрождение ископаемых слонов будет скандально известный корейский биолог Хван У Сок. В 2005 году он первым в мире клонировал собаку — необычного щенка афганской борзой назвали Снаппи. Одновременно Хван объявил, что смог получить линии стволовых клеток, используя биоматериал взрослых людей. Эта работа означала революцию в трансплантологии и медицине вообще, потому что стволовые клетки умеют превращаться в любые клетки, но в организме взрослых их почти нет. На ученого посыпался дождь наград и грантов.

Однако довольно скоро вскрылось, что Хван сфальсифицировал исследования. Разгорелся чудовищный скандал, в 2009 году генетика приговорили к двум годам условно. Хван лишился всех званий и должности в Сеульском университете. И все же кореец продолжил заниматься наукой (в конце концов, собаку-то он и правда клонировал), основал фонд Sooam, и в 2011 году представил миру первых клонированных койотов. Теперь он нацелился на мамонта. По словам Григорьева, Хван производит очень хорошее впечатление. Он приятен в личном общении и весьма смел — ездит во все экспедиции, в том числе и на Крайний Север, с риском для жизни лазит в пещеры за образцами. Так что якутские палеонтологи отважились поработать с ним.

Один в один

В ходе клонирования ученые получают идентичную копию организма, используя его же клетки. Схема процесса такова: исследователи берут какую-нибудь клетку «копируемого» животного (например, мамонта) и выделяют из нее ядро. Затем специалисты получают яйцеклетку от другого организма (в данном случае слона) и удаляют ее собственное ядро. На вакантное место помещается ядро из клетки первого животного-реципиента, и полученный «гибрид» подсаживают в матку суррогатной матери, которая в итоге и родит клона.

Охота на клетку

А работы предстоит много. Любое клонирование — непростой процесс, а уж тем более клонирование давно вымершего животного. Во-первых, нужно найти клетки с целыми ядрами — на это уйдут месяцы. Во-вторых, для клонирования мамонта необходимо получить яйцеклетку современной слонихи, а это очень сложно. Беременность у этих животных длится 22 месяца, а овуляция происходит раз в пять-шесть лет. Сегодня ученые не могут поймать момент овуляции и извлечь яйцеклетку, не повредив ее либо слониху. Можно попытаться получить яйцеклетку из умершего животного, но в таком случае овуляция должна наступить непосредственно перед кончиной. Шансов на подобное стечение обстоятельств не очень много.

При этом КПД операций по клонированию весьма низок. Например, в случае овечки Долли ученые получили 277 яйцеклеток, до состояния эмбрионов развились 29 из них, а выжил только один. Учитывая, как редко происходит овуляция у слоних, только добыча яйцеклеток потребует годы. Кроме того, неясно, сможет ли слониха выносить мамонтенка — генетически эти виды все-таки различаются.

Так что срок в 30-50 лет весьма оптимистичен, и Хван У Соку нужно очень хорошо следить за здоровьем, чтобы дожить до получения клона. «Но если не начинать сейчас, то через 30-50 лет до клонирования мамонта все еще будет «лет 30-50», — замечает Григорьев.

Горячая кровь

В мае 2010 года в журнале Nature Genetics была опубликована работа канадца Кевина Кэмпбелла, который расшифровал участок ДНК мамонта, отвечающий за синтез гемоглобина. Как оказалось, у мамонтов свойства гемоглобина сильно отличались от слоновьего. Кэмпбелл и его коллеги синтезировали белок мамонта и выяснили, что он мог отдавать кислород клеткам даже при очень низких температурах. Возможно, скоро это исследование получит экспериментальное подтверждение, если красно-бурая жидкость, которая вытекала из туши мамонта, найденного в мае 2013-го, действительно окажется кровью.

Дом для новорожденного

Если смелый эксперимент удастся, дом для новорожденного мамонтенка уже готов. Он называется плейстоценовый парк. Его начали создавать в 1988 году по инициативе эколога Сергея Зимова.

Когда мамонты обитали на территории современных Северной Америки и Евразии (это было в период от 4,8 миллиона до 4 000 лет назад), условия там сильно отличались от нынешних. Например, в Приполярье не было тундры. Сейчас тамошние растения, погибнув, не разлагаются, а «уходят» в вечную мерзлоту, превращаясь в торф. В итоге органические вещества, из которых они состоят, не попадают в почву. На такой бедной земле может выжить только самая неприхотливая флора.

Мамонты и другие крупные животные, существовавшие в то же время, например носороги, бизоны, дикие лошади, олени, съедали большую часть растительности до того, как она превращалась в торф, и возвращали в почву органику в виде навоза. И вместо тундры местные равнины были покрыты сочными лугами — мамонтовыми прериями, ближайший аналог которых — африканские саванны.

Чтобы восстановить древний ландшафт, в нижнее течение реки Колымы в 150 километрах от Северного Ледовитого океана завезли 25 якутских лошадей. Постепенно туда стали подселять и другие виды: оленей, лосей, зубров, овцебыков, маралов. И растительность начала меняться, превращаясь в мамонтовую прерию. В ожидании двух главных обитателей — мамонта и шерстистого носорога — ученые планируют в ближайшее время заселить заказник площадью 160 км² двугорбыми верблюдами, сайгаками и амурскими тиграми в качестве хищников. Потому что клонировать саблезубого тигра, увы, пока никто не собирается.

Сергей Петухов, обозреватель РИА Новости.

Во вторник в якутском Северо-Восточного федеральном университете были подведены итоги российско-корейской экспедиции, искавшей в вечной мерзлоте останки мамонтов, .

Близ села Казачье в Усть-Янском районе Якутии экспедицией были найдены шерсть мамонта с кусками жира и несколько костей, в том числе одна с костным мозгом. В костном мозге с помощью полевого микроскопа с высокой разрешающей способностью было обнаружено одно внешне неповрежденное клеточное ядро.

Это единственное клеточное ядро и о том, что наконец-то найдены "живые клетки" мамонта и теперь его клонирование - дело техники и самого ближайшего будущего.

"Меня насторожило, что пошла информация о "живых" клетках мамонта. Я уже позвонил в Якутск, чтобы там ничего не выдумывали", - сообщил РИА Новости заместитель директора санкт-петербургского Зоологического института РАН Алексей Тихонов, курировавший экспедицию с российской стороны.

Но хотя клонирование мамонта, судя по всему, откладывается на неопределенный срок, российско-корейская экспедиция все же принесла весомый научно-практический результат.

Как сообщил Алексей Тихонов, по условиям договора с корейской стороной она поможет обеспечить якутский университет высокотехнологичной научной аппаратурой и обучит его сотрудников и студентов самым современным молекулярно-биологическим методикам.

"В итоге мы получим генетическую лабораторию в Якутске, что гораздо важнее, чем клонирование мамонтов", - говорит Тихонов.

Промашка с носорогом

Последние мамонты исчезли по историческим меркам совсем недавно. Последние животные встречались на Земле 3700 лет назад, когда уже начался бронзовый век, в Древнем Египте писали иероглифами, а на Крите существовала минойская культура, прославившаяся полетами Икара и Дедала, лабиринтом Минотавра и прочими, как сказали бы сейчас, инновациями.

Сравнительно недавнее время вымирания мамонтов и его условия - наступавший на юг ледник - позволяли надеяться, что рано или поздно будет найден замороженный труп животного, годный для его оживления. А после успешного клонирования овечки Долли эти надежды превратились почти в уверенность.

Ведь целый мамонт уже был не нужен, для клонирования всего зверя теоретически достаточно было одной-единственной его клетки, причем из любого места трупа - хоть из мышц или жира, хоть из кости или кожи, хоть из волоска с кончика хвоста, только бы эта клетка ожила при размораживании.

Первыми на российский Крайний Север в конце 90-х годов приехали искать такие клетки мамонтов японцы во главе с профессором Акира Иритани, который на тот момент был директором Института передовых технологий частного университета Кинки в японской префектуре Нара.

"В 1997 и 1999 годах мы с японцами искали "свежие" трупы мамонтов на Колыме. Никаких живых клеток не нашли, а нашли кусок кожи, который Иритани увез в Японию. Помню, что была масса проблем с разрешением на вывоз, особенно долго ждали разрешения министерства культуры. Но кожа в итоге оказалась не мамонта, а шерстистого носорога", - вспоминает доктор биологических наук из Якутска Геннадий Боескоров.

По его словам, эти экспедиции по поискам мамонтов для клонирования финансировали японцы.

Сокровища якутских катакомб

Очередную попытку найти в вечной мерзлоте живые клетки мамонта предприняли этим летом южнокорейские генетики из Суамского биотехнологического исследовательского фонда. Их российским партнерами были ученые из Северо-Восточного федерального университета Якутска. По словам руководителя экспедиции, директора Музея мамонта при университете Семена Григорьева, подготовились они основательно и действовали наверняка.

Помимо генетиков и палеонтологов, в состав экспедиции была включена съемочная группа из лондонской компании CB-films, производящей документальные программы для BBC, Discovery, National Geographic и других популярных телеканалов. На этот раз захватывающий кинодокумент о клонировании мамонта им заказал National Geographic. По словам Семена Григорьева, его покажут в следующем году.

"Искали мы около моего родного села Казачьего. Жители здесь давно роют в земле ходы в поисках бивней мамонтов. В итоге на глубине 5-6 метров образовалась целая сеть подземных ходов длиной в сотни метров, весьма интересные для науки. За последние три года тут было сделано по крайней мере пять уникальных находок. Собака возрастом 12 тысяч лет, лосенок - 9 тысяч лет, мамонтенок - 40 тысяч лет, а также лошадь и бизон, они были помоложе", - рассказывает Семен Григорьев.

Его расчет оказался верным. Экспедиция в одном из подземных ходов нашла шерсть мамонта с кусками жира и кость с костным мозгом. Кость распилили и изучили мозг под микроскопом, который корейцы привезли с собой.

По словам Григорьева, под микроскопом они увидели неповрежденные ядра клеток, в которых хранится ДНК организма. Пробы костного мозга сразу поместили в корейскую морозильную камеру. С их помощью руководитель экспедиции с корейской стороны Хванг Ву-Сук теперь надеется клонировать мамонта.

Анфан террибль генетики

Личность Хванг Ву-Сука довольно известна в научных кругах. В 2007 году он был уволен из Сеульского национального университета после обвинения в фальсификации результатов опытов по клонированию стволовых клеток человека, и в 2009 году осужден судом центрального района Сеула на два года условно за нарушение биоэтики и другие прегрешения против научной и человеческой морали. В частности, ему инкриминировали то, что яйцеклетки для своих опытов он брал у сотрудниц своей лаборатории.

Формально Хван Ву-Сук признал себя виновным в подтасовке научных фактов, официально отозвав из американского журнала Science статью с результатами клонирования стволовых клеток. Но не сдался и продолжил свои исследования уже в частном научном фонде.

Даже его недруги признают, что на сегодня он один из самых удачливых в мире специалистов по клонированию. В 2005 году ему удалось клонировать собаку, чего никак не могли сделать ни британские, ни американские ученые, а в прошлом году он клонировал койота.

"Прежде чем заключать договор о совместной экспедиции, мои коллеги из Якутска побывали в Корее в его лаборатории. Она произвела на них впечатление солидности", - говорит Алексей Тихонов.

"А сам профессор Хван Ву-Сук производит впечатление глубоко порядочного человека", - добавляет Семен Григорьев.

"Во всяком случае, он смелый человек. Рискуя жизнью, полез в пятидесятиметровый туннель, где запросто может завалить. Местные пробивают их вечной мерзлоте с помощью водяных помп", - говорит Тихонов.

Слономамонт или мамонтослон?

"На самом деле под микроскопом было только одно внешне целое ядро клетки. Самих клеток как таковых уже не было, ни одной целой. К тому же, пока неизвестно, чье это ядро - клетки мамонта или посторонней бактерии", - рассказывает Алексей Тихонов.

По его словам, целые клетки мамонта уже находили ученые из Новосибирска, но при размораживании они расплывались. Почти невероятно, что при гибели животного отдельные его клетки остаются живыми до тех пор, пока они плавно не заморозятся. Клетки замерзают уже мертвыми или гибнут при замораживании от образующихся внутри них кристалликов льда, которые как бритвы, режут все живое в клетке, считает ученый.

"Это бактерии способны инкапсулироваться и сохраняться в анабиозе десятки тысяч лет. У таких высокоорганизованных животных, как мамонт, могут лишь хорошо сохраниться мертвые клетки с обрывками ДНК в них. Подобные случаи не такая уж редкость. На сегодня уже полностью расшифрована митохондриальная ДНК мамонта, больше, чем наполовину ядерная ДНК, и продолжают поступать новые материалы. Но пересадить ядро из мертвой клетки мамонта в яйцеклетку слона и вырастить клон мамонта не получится", - поясняет доктор Боескоров.

"Существует еще одно непреодолимое препятствие. Если бы даже удалось оживить клетку мамонта и успешно пересадить ее ядро в яйцеклетку слонихи, зародыш не сформируется. Эти животные слишком далекие родственники. Они даже не разных видов, а разных родов. Сами корейцы показали, что внутри семейства собачьих нельзя клонировать лисицу, используя волчьи яйцеклетки", - говорит Алексей Тихонов.

По его словам, максимум, что можно сделать даже при идеальной сохранности ДНК мамонта, - это создать трансгенного слона. То есть слона с включенным в его ДНК генами мамонта.

"Выйдет и не мамонт и не слон, а непонятно что", - вздыхает Алексей Тихонов, один из самых авторитетных мамонтоведов в мире, ученый секретарь Международного мамонтового комитета.

"Впрочем, наука не стоит на месте. Несколько лет назад я бы однозначно сказал, что клонировать мамонта нельзя. Сейчас не столь самоуверен. Может быть, и получится когда-нибудь", - подводит итог ученый.

Высокотехнологичный клок шерсти с мамонта

До подъема АПК российского Крайнего Севера за счет пастбищного мамонтоводства с глубокой переработкой его продуктов еще далеко. Но одну реальную научно-практическую пользу из комков шерсти, жира и костного мозга мамонта якутские ученые уже сумели извлечь.

"В договоре с корейской стороной есть пункт, согласно которому они обязались помочь нам наладить в Якутске генетическую лабораторию и обучить ее персонал и студентов университета своим методикам", - говорит Алексей Тихонов.

Это, наверное, и может стать главным итогом клонирования мамонта - якутские клоны корейских молекулярных биологов. Если они окажутся жизнеспособными и, в свою очередь, принесут плодовитое потомство молекулярщиков, которое разрастется в якутскую научную школу молекулярной генетики, то эксперимент по клонированию мамонта можно будет считать успешным.

Расшифрованы 70% ядерной ДНК шерстистого мамонта, оставшиеся 30% на подходе. Однако для клонирования понадобится немного больше, чем геном. И пока одни специалисты пытаются извлечь из чернового варианта генома полезную информацию, другие объясняют, чего именно не хватает.

Идея клонирования какого-нибудь вымершего животного будоражит околонаучные умы и широкие массы уже не первый десяток лет – примерно с тех пор, как по кинотеатрам прошелся фильм «Парк Юрского периода». Сегодня разговоры о клонировании доисторических ящеров уже не ведутся ни всерьез, ни даже в шутку – уж слишком много лет пролежали их кости в грунте, так что и от самих костей остались лишь отпечатки в камне.

Другое дело – шерстистый мамонт. История этих животных началась почти одновременно с историей человека, однако конец её был куда более скор – то ли оттого, что люди довольно быстро перебили всех косматых на мясо, шкуры и кости, то ли просто от жары.

В отличие от динозавров, ныне обнаруживаемых все чаще в жарких каменистых пустынях, мамонты попадаются вмерзшими в вечную мерзлоту, до сих пор сохранившуюся в приполярной Сибири и в Северной Америке. Пролежав тысячу лет во льдах, туши мамонтов содержат в себе сохранившиеся мягкие ткани и кости, а иногда и волосы.

И вот здесь начинается чудо клонирования мамонтов, о котором ученые впервые заговорили всерьез. Пусть и с огромным скепсисом, но все же всерьез.

Геном мамонта

Произошло это благодаря работе Уэбба Миллера и Стефана Шустера из американского Пенсильванского университета, уже известного читателю по работам, посвященным анализу полностью расшифрованных митохондриальных ДНК шерстистых мамонтов. Тогда учёные попытались разобраться, как развивалась нетривиальная история этих животных, и почему американские мамонты перед своей окончательной кончиной все же выжили своих сибирских собратьев из самой Сибири.

В своей новой публикации в Nature Шустер и Миллер вместе с американскими и российскими коллегами – генетиками, биохимиками и зоологами – объявили, что команде учёных удалось секвенировать примерно 70% ядерной ДНК шерстистого мамонта, и только время и неполная сохранность генетического материала отделяют от завершения полного цикла работ по расшифровке.

Помогли генетикам современные методы секвенирования, развивающегося семимильными шагами. Новые методы позволяют сбор полных геномов из крохотных, по нескольку десятков нуклеотидных пар, отрезков ДНК и очень подходят для работы с вымершими животными, генетические молекулы которых за тысячи лет оказались повреждёнными и раздробленными на мелкие фрагменты. Выросла и скорость проведения анализа, снизилась стоимость реактивов и оборудования. Однако не только технический прогресс обусловил успех современных генетиков.

Уникальными обнаружения мамонтов делают вовсе не сохранившиеся мягкие ткани и кости, а шерсть.

Именно из нее ученые могут с большой долей уверенности извлечь генетический материал, не принадлежащий плесени и бактериям.

Прочитав 4,2 миллиарда пар нуклеотидов из многочисленных фрагментов, команда Миллера и Шустера обладает на сегодня последовательностью из 3,3 миллиардов пар оригинального генома (остальной «мусор» – участки ДНК вирусов, бактерий и прочих организмов). По оценкам генетиков, всего геном мамонта содержит 4,7 миллиарда комплементарных пар, что в полтора раза превышает длину человеческого генома.

Также Миллер сумел выявить несколько кодирующих последовательностей, отвечающих за синтез уникальных для данного вида животных белков. Впрочем, само по себе это открытие не так важно, как детальный анализ этих белков, выявление их функциональности и влияние на фенотип. Однако такие работы еще впереди, и заниматься ими будут, вероятно, уже другие специалисты.

Как будем клонировать?

Своей работой и обещанием в скором времени выдать на-гора полный геном вымершего тысячелетия назад животного Шустер изрядно подогрел научное сообщество и широкие массы. Но параллельно с этой публикацией в Nature вышли несколько «отрезвляющих» статей, касающихся как самих результатов работы, так и уже вертящегося на языке слова «клонирование».

В сопровождающем статью комментарии генетик Михаэль Хофрайтер из Института эволюционной антропологии имени Макса Планка в Лейпциге оценил работу американских генетиков, сравнив её с продолжающимися работами расшифровке полного генома неандертальского человека. По его мнению, даже такой «черновой» геном, может дать толчок массе более специальных исследований.

Генри Николс же, авторитетный научный публицист из английского Гринвича, вплотную прошелся по теме клонирования ископаемого животного, собрав комментарии большого количества разных специалистов, опыт которых потребуется на последовательных стадиях клонирования животного. Свою публикацию писатель приурочил к двухсотлетию со дня рождения Чарльза Дарвина, которую журнал Nature отмечает специальным циклом публикаций.

Для того, чтобы хоть сколько-нибудь серьезно говорить о клонировании мамонта, нужно обладать очень достоверно установленным его геномом. Например, чтобы достоверно иметь не более одной ошибки на 10 000 пар азотистых оснований, современным методам нужно секвенировать ДНК с 12-кратным запасом. Пригодной же для клонирования считается последовательность, прочитанная 30–40 раз. Сейчас этот коэффициент для генома мамонта находится на уровне 0,7–0,9.

Как нетрудно догадаться, до клонирования такой последовательности очень и очень далеко.

Впрочем, от завершения этой работы ученых, по сути, отделяют только время и деньги. Потому априори можно предположить, что рано или поздно полный и достоверный геном шерстистого мамонта будет получен. Однако на этом этапе проблемы у ученых, вознамерившихся воскресить косматого гиганта, только начинаются. Устраивайтесь поудобнее.

Хромосомы и девочки

Генетические данные для клонирования должны быть представлены не просто в форме длинной цепочки ДНК – их надо разбить на определенной длины кусочки, которые затем свернуть в хромосомы.

Проблема в том, что никто не знает, сколько хромосом было у шерстистого мамонта. И, возможно, мы этого никогда не узнаем.

Однако надежда есть – можно принять, что хромосом у мамонта было столько же, сколько их осталось у африканского предка – слона, публикация семикратно секвенированной ДНК которого запланирована массачусетскими учеными на следующий год. Однако для того, чтобы провести параллели и аналогии между двумя геномами, разделенными семью с половинами миллионами лет эволюции, и сопоставить 56 слоновьих хромосом с отрезками кода ДНК мамонта, ученым придется проделать титанический труд по определению и учету всех единичных мутаций, удвоений и удалений генов, а также их перестановке.

Более того, в ходе этой адской работы неизбежно возникнет проблема Y-хромосомы, которая у всех млекопитающих характеризуется высокой повторяемостью одних и тех же участков. Разобраться, где у нее начало и конец, а где середина, очень сложно.

Благо, мир состоит не только из мужчин – а потому эту проблему можно просто обойти. Ученые, секвенирующие геном африканского слона так и поступили, изучив женский набор хромосом вместо мужского. Х-хромосома тоже не подарок, однако её секвенирование все же несколько проще. Поэтому первые клонированные мамонты, скорее всего, будут сплошь девочками.

Так было и в фильме «Парк Юрского периода», однако там люди просто побоялись несанкционированного размножения тварей и сделали их всех однополыми. Если кто помнит фильм – не помогло.

Кроме того, каждая хромосома имеет несколько небольших, но очень важных для работы хромосомы участков, так же характеризуемых высокой повторяемостью компонентов, называемых центромерами. Эти участки помогают внутриклеточному молекулярному механизму манипулировать хромосомами в таких процессах, как деление клеток. Изучить центромерную последовательность, определить, где она начинается и где заканчивается, сегодня невозможно по тем же самым причинам, почему крепким орешком является и Y-хромосома. Такой же неприятной особенностью обладают и концевые участки хромосом – теломеры.

Однако и эта проблема может оказаться разрешимой. По крайней мере, в этом уверен Билл Эрншоу, генетик из университета Эдинбурга, показавший совсем недавно работоспособность искусственно синтезированной центромеры на примере человеческой хромосомы.

Но даже после того, как какими-то невероятными усилиями ученые решат все проблемы с хромосомами, они столкнутся с очень неприятным фактом – набор хромосом нового мамонта будет иметь только одну версию генов, в то время как все млекопитающие, да и не только они, имеют диплоидный набор хромосом, достающихся от обоих родителей. В таких условиях любая ошибка в изначально секвенированной ДНК будет иметь серьезное значение, так как компенсировать её правильной версией гена, доставшейся от другого мамонта, будет просто невозможно.

Сделай сам

Однако прежде чем рассуждать о жизнеспособности полученного таким образом мамонта необходимо синтезировать искусственную ДНК с 4,7 миллиардами нуклеотидных пар.

На сегодняшний день самая длинная полностью синтетическая ДНК имеет около шестисот тысяч нуклеотидных пар и принадлежит бактерии Mycoplasma genitalium. Если учесть, что новый мамонт будет иметь столько же хромосом, сколько и слон, то нетрудно подсчитать, что задача разбивается на 56 кусков длиной по 160 миллионов нуклеотидных пар в среднем. Каждый такой кусок необходимо разбить на подзадачи, длиной до 8 тысяч нуклеотидов – с более длинными кусками ДНК работать современные методики не позволяют.

Насинтезировать много коротких отрезков ДНК – задача сегодня почти рутинная, её можно выполнить довольно быстро и за разумные деньги, распределив нагрузку между несколькими коммерческими фирмами. Гораздо сложнее затем собрать хромосомы из отдельных отрезков. В процессе такой сборки удлиняющиеся цепочки становятся очень нестабильными.

Группа генетиков из Института Вентера, синтезировавшая геном M. genitalium, собирала большие куски хромосом внутри бактерий E.coli, которые затем интегрировала в «искусственные бактериальные хромосомы», полученные на основе дрожжевых хромосом. Эти хромосомы, помещенные в живую культуру дрожжей, в итоге рекомбинации дали хромосомные отрезки, содержащие в себе целый бактериальный геном.

Вряд ли такой подход можно напрямую масштабировать и применить к гигантскому коду ДНК млекопитающего. По крайней мере, собеседники Николса высказывают скепсис по этому поводу. Но если представить, что ученым все же удастся синтезировать хромосомы будущего мамонта, едва ли в этом случае стоит рассчитывать на успех. Затем хромосомы нужно поместить в клеточное ядро.

Ученые сходятся во мнении, что лучше всего по старинке брать это ядро из экстракта лягушачьей икры. Этот метод был открыт еще в 80-х годах прошлого столетия.

Потом будет необходимо насобирать яйцеклеток слоних, что будет той ещё задачей, учитывая особенности длительного слоновьего цикла овуляции. Затем в яйцеклетках нужно подменить ядра, рискуя потерять многомиллионный труд из-за несовместимости органелл – например, митохондрий, несомненно, отличных у слонов и мамонтов.

Но это все уже совсем грубое теоретизирование, касающееся, в том числе и соотношения размеров матки мамонтих и слоних, продолжительности жизни клонированного мамонта, и необходимости тут же клонировать еще одного, желательно мальчика, пока юная мамонтиха не умерла с тоски от одиночества, и так далее.

Сегодня мы лишь знаем, как выглядит примерно 0,7 ядерной ДНК мамонта. Подождем, когда появится целая последовательность, и посмотрим, до чего к тому времени дойдет техника клонирования.

На фото: комок волос мамонта, хорошо показывающий как тёмные жёсткие наружные волосы, так и мягкий красно-коричневый подшёрсток. Из подобных комков были собраны и фрагменты ДНК для секвенирования генома мамонта. // S.C.Schuster, www.gazeta.ru



Методы лечения