Управление оптово-розничными продажами. Аккумуляторная батарея история до наших дней

Аккумулятор служит для накопления электрической энергии, выступая автономным источником электропитания. В основу действия аккумулятора положена обратимость химических процессов, которые происходят внутри него. Именно эта особенность позволяет использовать устройство многократно и циклически (постоянный заряд и разряд). Разряженный аккумулятор заряжают методом пропускания электрического тока в таком направлении, которое противоположно направлению тока при разряде аккумулятора. АКБ в процессе работы мотора заряжается от генератора прямо в подкапотном пространстве автомобиля.

Аккумуляторная батарея имеет корпус. В данном корпусе расположены перегородки, разделяющие батарею на ячейки (банки). Аккумулятор на 12 вольт, который чаще всего устанавливается на легковых автомобилях, включает в себя 6 ячеек. В каждой банке имеются небольшие блоки, которые соединены друг с другом.

В отдельном блоке имеются положительные и отрицательные электроды. Указанные электроды представляют собой пластины (решетки), которые изготовлены из свинца (на примере свинцового аккумулятора). Данные пластины покрыты особым активным составом. Между пластинами с положительными и отрицательными полюсами также находится разделитель (сепаратор). Сепараторы изготовлены из материалов, которые не пропускают электрический ток.

Правильная зарядка автомобильного аккумулятора зарядным устройством. Проверка перед зарядкой, каким током заряжать аккумулятор. Как зарядить АКБ без ЗУ.

  • Когда нужно заряжать необслуживаемый автомобильный аккумулятор. Как заряжать необслуживаемую АКБ зарядным устройством: сила тока, время зарядки. Советы.
  • Как измеряется плотность электролита в АКБ, от чего зависит данный показатель. Доступные способы повышения плотности в "банках" аккумулятора своими руками.


  • Каждый год количество устройств в мире, которые работают от аккумуляторных батарей, неуклонно возрастает. Не секрет, что самым слабым звеном современных устройств являются именно аккумуляторы. Их приходиться регулярно подзаряжать, они обладают не такой большой емкостью. Существующие аккумуляторные батареи с трудом позволяют добиваться автономной работы планшета или мобильного компьютера в течение нескольких дней.

    Поэтому производители электромобилей, планшетов и смартфонов сегодня заняты поиском возможностей сохранения значительных объемов энергии в более компактных объемах самого аккумулятора. Несмотря на разные требования, предъявляемые к батареям для электромобилей и мобильных устройств, между ними можно легко провести параллели. В частности, известный электрокар Tesla Roadster питается от литий-ионной батареи, разработанной специально для ноутбуков. Правда, для обеспечения электроэнергией спортивного автомобиля инженерам пришлось использовать более шести тысяч таких элементов питания одновременно.

    Идет ли речь об электромобиле или мобильных устройствах, универсальные требования к аккумулятору будущего очевидны – он должен быть меньше, легче и накапливать значительно больше энергии. Какие перспективные разработки в этой области могут удовлетворить данные требования?

    Литий-ионные и литиево-полимерные батареи

    Литий-ионный аккумулятор фотоаппарата

    На сегодняшний день в мобильных устройствах наибольшее распространение получили литий-ионные и литиево-полимерные батареи. Что касается литий-ионных аккумуляторов (Li-Ion), то они производятся еще с начала 90-х годов. Их главное преимущество – достаточно высокая энергетическая плотность, то есть способность сохранять определенный объем энергии на одну единицу массы. Кроме того, в таких батареях отсутствует пресловутый «эффект памяти» и имеется сравнительно низкий саморазряд.

    Использование лития вполне обоснованно, ведь этот элемент обладает высоким электрохимическим потенциалом. Недостатком всех литиево-ионных батарей, коих на самом деле в настоящее время насчитывается большое количество видов, является достаточно быстрое старение аккумулятора, то есть резкое снижение характеристик при хранении или длительном использовании батареи. К тому же, потенциал емкости современных литий-ионных батарей, судя по всему, уже практически исчерпан.

    Дальнейшим развитием литий-ионной технологии являются литиево-полимерные источники питания (Li-Pol). В них вместо жидкого электролита используется твердый материал. В сравнении со своим предшественником, литиево-полимерные батареи имеют более высокую энергетическую плотность. Вдобавок, теперь стало возможным производить батареи практически в любой форме (литий-ионная технология требовала только цилиндрической или прямоугольной формы корпуса). Такие батареи обладают небольшими габаритами, что позволяет с успехом применять их в различных мобильных устройствах.

    Однако появление литиево-полимерных батарей кардинальным образом не изменило ситуацию, в частности, потому, что такие батареи не способны отдавать большие токи разряда, а их удельная емкость все же недостаточна, чтобы избавить человечество от необходимости постоянной подзарядки мобильных устройств. Плюс ко всему, литиево-полимерные аккумуляторы довольно «капризны» в эксплуатации, они имеют недостаточную прочность и склонность к возгоранию.

    Перспективные технологии

    В последние годы ученые и исследователи в различных странах активно работают над созданием более совершенных технологий аккумуляторных батарей, способных уже в ближайшем будущем прийти на смену существующим. В этом плане можно выделить несколько наиболее перспективных направлений:

    — Литий-серные батареи (Li-S)

    Литий-серный аккумулятор – перспективная технология, энергоемкость подобной батареи в два раза выше, чем у литий-ионных. Но в теории она может быть еще выше. В таком источнике питания используется жидкий катод с содержанием серы, при этом он отделен от электролита особой мембраной. Именно за счет взаимодействия литиевого анода и серосодержащего катода была существенно увеличена удельная емкость. Первый образец подобного аккумулятора появился еще в 2004 году. С того момента был достигнут определенный прогресс, благодаря чему усовершенствованный литий-серный аккумулятор способен выдерживать полторы тысячи циклов полной зарядки-разрядки без серьезных потерь в емкости.

    К преимуществам данного аккумулятора также можно отнести возможность применения в широком диапазоне температур, отсутствие необходимости в использовании усиленных компонентов защиты и сравнительно низкую себестоимость. Интересный факт – именно благодаря применению такого аккумулятора в 2008 году был поставлен рекорд по продолжительности полета на воздушном судне на солнечных батареях. Но для массового выпуска литиево-серного аккумулятора ученым еще придется решить две основные проблемы. Требуется найти эффективный способ утилизации серы, а также обеспечить стабильную работу источника питания в условиях смены температурного или влажностного режима.

    — Магниево-серные батареи (Mg/S)

    Обойти традиционные литиевые батареи могут и аккумуляторы, базирующиеся на соединении магния и серы. Правда, до последнего времени никто не мог обеспечить взаимодействие этих элементов в одной ячейке. Сам магниево-серный аккумулятор выглядит очень интересным, ведь его энергетическая плотность может доходить до более чем 4000 Вт-ч/л. Не так давно благодаря американским исследователям, по всей видимости, удалось решить основную проблему, стоящую на пути разработки магниево-серных батарей. Дело в том, что для пары магний и сера не было никакого подходящего электролита, совместимого с этими химическими элементами.

    Однако ученые сумели создать такой приемлемый электролит за счет образования особых кристаллических частиц, обеспечивающих стабилизацию электролита. Образец магниево-серного аккумулятора включает в себя анод из магния, сепаратор, катод из серы и новый электролит. Впрочем, это только первый шаг. Перспективный образец, к сожалению, пока не отличается долговечностью.

    — Фторид-ионные батареи

    Еще один интересный источник питания, появившийся в последние годы. Здесь за перенос зарядов между электродами отвечают анионы фтора. При этом анод и катод содержат металлы, преобразующиеся (в соответствии с направлением тока) во фториды, либо восстанавливающиеся обратно. Благодаря этому обеспечивается значительная емкость батареи. Ученые заявляют, такие источники питания имеют энергетическую плотность, в десятки раз превосходящую возможности литий-ионных батареек. Помимо значительной емкости, новые аккумуляторы также могут похвастаться существенно меньшей пожароопасностью.

    На роль основы твердого электролита было перепробовано множество вариантов, но выбор, в конечном счете, остановился на лантане бария. Хотя фторид-ионная технология кажется очень перспективным решением, она не лишена недостатков. Ведь твердый электролит может стабильно функционировать лишь при высоких температурах. Поэтому перед исследователями стоит задача отыскать жидкий электролит, способный успешно работать при обычной комнатной температуре.

    — Литий-воздушные батареи (Li-O2)

    В наши дни человечество стремится к использованию более «чистых» источников энергии, связанных с генерацией энергии солнца, ветра или воды. В этом плане очень интересными представляются литий-воздушные батареи. В первую очередь, они рассматриваются многими экспертами в качестве будущего электромобилей, но с течением времени могут найти применение и в мобильных устройствах. Такие источники питания обладают очень высокой емкостью и при этом сравнительно малыми размерами. Принцип их работы следующий: вместо оксидов металла в позитивном электроде применяется углерод, который вступает в химическую реакцию с воздухом, в результате чего создается ток. То есть для выработки энергии здесь частично используется кислород.

    Использование кислорода в качестве активного материала катода имеет свои существенные преимущества, ведь он является практически неисчерпаемым элементом, а самое главное, абсолютно бесплатно берется из окружающей среды. Считается, что плотность энергии у литий-воздушных батарей сможет достигать впечатляющей отметки в 10 000 Втч/кг. Может быть, в недалеком будущем подобные батареи смогут поставить электромобили в один ряд с машинами на бензиновом двигателе. Кстати, аккумуляторы подобного типа, выпущенные для мобильных гаджетов, уже можно встретить в продаже под названием PolyPlus.

    — Литий-нанофосфатные батареи

    Литий-нанофосфатные источники питания – это следующее поколение литиево-ионных батареек, которые характеризуются высокой отдачей тока и сверхбыстрой зарядкой. Для полной зарядки такой батареи требуется всего пятнадцать минут. Они также допускают в десять раз больше циклов зарядки в сравнении со стандартными литий-ионными элементами. Таких характеристик удалось добиться благодаря использованию особых наночастиц, способных обеспечить более интенсивный поток ионов.

    К достоинствам литий-нанофосфатных батарей можно отнести также слабый саморазряд, отсутствие «эффекта памяти» и способность работать в условиях широкого диапазона температур. Литий-нанофосфатные батареи уже доступны в продаже и применяются для некоторых типов устройств, однако их распространению мешает необходимость в специальном зарядном устройстве и больший вес в сравнении с современными литий-ионными или литийево-полимерными аккумуляторами.

    В действительности, перспективных технологий в области создания аккумуляторных батарей гораздо больше. Ученые и исследователи работают не только над созданием принципиально новых решений, но и над улучшением характеристик существующих литий-ионных батареек. Например, за счет использования кремниевых нанопроводов или разработки нового электрода, обладающего уникальной способностью к «самозаживлению». В любом случае уже не за горами тот день, когда наши телефоны и другие мобильные устройства будут жить целые недели без подзарядки.

    Читаем вопрос trudnopisaka :

    "Интересно было бы узнать про новые технологии аккумуляторов, которые готовят к серийному производству. "

    Ну конечно же критерий серийного производства несколько растяжимый, но давайте попробуем узнать, что сейчас перспективно.

    Вот что придумали химики:


    Напряжение ячейки в вольтах (по вертикали) и удельная ёмкость катода (мАч/г) новой батареи сразу после её изготовления (I), первого разряда (II) и первого заряда (III) (иллюстрация Hee Soo Kim et al./Nature Communications).

    По своему энергетическому потенциалу батареи, основанные на сочетании магния и серы, способны обойти литиевые. Но до сих пор никто не мог заставить эти два вещества дружно работать в аккумуляторной ячейке. Теперь, с некоторыми оговорками, это удалось группе специалистов в США.

    Учёные из тойотовского исследовательского института в Северной Америке (TRI-NA) попытались решить главную проблему, стоящую на пути создания магниево-серных батарей (Mg/S).

    Подготовлено по материалам Тихоокеанской северо-западной национальной лаборатории .

    Немцы изобрели фторид-ионную аккумуляторную батарею

    В дополнение к целой армии электрохимических источников тока учёные разработали ещё один вариант. Его заявленные достоинства — меньшая пожароопасность и в десять раз большая удельная ёмкость, чем у литиево-ионных батарей.

    Химики из технологического института Карлсруэ (KIT) предложили концепцию аккумуляторов на основе фторидов металлов и даже испытали несколько небольших лабораторных образцов.

    В таких аккумуляторах за перенос зарядов между электродами отвечают анионы фтора. Анод и катод аккумулятора содержат металлы, которые в зависимости от направления тока (заряд или разряд) по очереди превращаются во фториды или восстанавливаются обратно до металлов.

    «Поскольку один атом металла способен принять или отдать сразу несколько электронов, эта концепция позволяет достичь чрезвычайно высокой плотности энергии — до десяти раз выше, чем у обычных литиево-ионных батарей», — говорит один из авторов разработки доктор Максимилиан Фихтнер (Maximilian Fichtner).

    Для проверки идеи немецкие исследователи создали несколько образцов таких батарей диаметром 7 миллиметров и толщиной 1 мм. Авторы изучили несколько материалов для электродов (медь и висмут в сочетании с углеродом, например), а электролит создали на основе лантана и бария.

    Однако такой твёрдый электролит - это лишь промежуточный шаг. Данный состав, проводящий ионы фтора, хорошо работает только при высокой температуре. Потому химики ищут ему замену - жидкий электролит, который действовал бы при комнатной температуре.

    (Подробности можно найти в пресс-релизе института и статье в Journal of Materials Chemistry.)

    Аккумуляторы будущего

    Что ждет рынок аккумуляторов в будущем, пока сложно прогнозировать. Литиевые батареи пока уверенно правят балом, и у них есть неплохой потенциал, благодаря литий-полимерным разработкам. Внедрение серебряно-цинковых элементов - весьма длительный и дорогостоящий процесс, и его целесообразность пока является дискуссионным вопросом. Технологии на основе топливных элементов и нанотрубок уже много лет восхваляются и описываются самым красивыми словами, однако когда дело доходит до практики, фактические продукты получаются либо слишком громоздкими, либо слишком дорогими, либо и то, и другое вместе взятое. Ясно лишь одно - в ближайшие годы данная отрасль будет продолжать активно развиваться, ведь популярность портативных устройств растет не по дням, а по часам.

    Параллельно с ноутбуками, ориентированными на автономную работу, развивается направление настольных ноутов, в которых батарея скорее играет роль резервного ИБП. Недавно в Samsung выпустили подобный ноутбук и вовсе без батареи.

    В NiCd -аккумуляторах также существует возможность электролиза. Чтобы в них не скапливался взрывоопасный водород, батареи оснащают микроскопическими клапанами.

    В знаменитом институте MIT недавно была разработана уникальная технология производства литиевых аккумуляторов усилиями специально-обученных вирусов.

    Несмотря на то, что топливный элемент внешне совершенно не похож на традиционную батарею, работает он по тем же принципам.


    А кто еще подскажет какие нибудь перспективные направления?

    А сегодня расскажем о воображаемых — с гигантской удельной ёмкостью и мгновенной зарядкой. Новости о подобных разработках появляются с завидной регулярностью, но будущее пока не наступило, и мы всё ещё пользуемся появившимися в начале позапрошлого десятилетия литий-ионными аккумуляторами, либо их чуть более совершенными литий-полимерными аналогами. Так в чём же дело, в технологических трудностях, неправильной интерпретации слов учёных или чём-то другом? Попробуем разобраться.

    В погоне за скоростью зарядки

    Один из параметров аккумуляторов, который учёные и крупные компании постоянно стараются улучшить — скорость зарядки. Однако бесконечно увеличивать её не получится даже не в силу химических законов протекающих в аккумуляторах реакций (тем более, что разработчики алюминий-ионных батарей уже заявили, что такой тип аккумуляторов может быть полностью заряжен всего за секунду), а из-за физических ограничений. Пусть у нас есть смартфон с батареей ёмкостью 3000 мАч и поддержкой быстрой зарядки. Полностью зарядить такой гаджет можно в течение часа силой тока в среднем 3 А (в среднем потому, что напряжение при заряде изменяется). Однако если мы хотим получить полный заряд всего за одну минуту, потребуется сила тока уже в 180 А без учёта различных потерь. Для заряда устройства таким током потребуется провод диаметром около 9 мм — в два раза толще самого смартфона. Да и силу тока 180 А при напряжении около 5 В обычное зарядное устройство выдать не сможет: владельцам смартфонов понадобится импульсный преобразователь тока вроде того, что изображён на фотографии ниже.

    Альтернатива увеличению силы тока — увеличение напряжения. Но оно, как правило, фиксированное, и для литий-ионный батарей составляет 3,7 В. Конечно, его можно превышать — зарядка по технологии Quick Charge 3.0 идёт с напряжением до 20 В, но попытка зарядить батарею напряжением около 220 В ни к чему хорошему не приведёт, и решить эту проблему в ближайшее время не представляется возможным. Современные элементы питания просто не могут использовать такое напряжение.

    Вечные аккумуляторы

    Разумеется, речь сейчас пойдёт не о «вечном двигателе», а об аккумуляторах с долгим сроком службы. Современные литий-ионные батареи для смартфонов способны выдержать максимум пару лет активного использования устройств, после чего их ёмкость неуклонно падает. Владельцам смартфонов со съёмными аккумуляторами повезло немного больше, чем другим, но и в этом случае стоит убедиться, что аккумулятор был произведён недавно: литий-ионные батарей деградируют даже тогда, когда не используются.

    Своё решение этой проблемы предложили учёные Стэнфордского университета: покрыть электроды существующих типов литий-ионных аккумуляторов полимерным материалом с добавлением наночастиц графита. По задумке учёных, это позволит защитить электроды, которые неизбежно покрываются микротрещинами в процессе эксплуатации, а те же микротрещины в полимерном материале будут затягиваться самостоятельно. Принцип действия такого материала похож на технологию, применённую в смартфоне LG G Flex с самовосстанавливающейся задней крышкой.

    Переход в третье измерение

    В 2013 году появилось сообщение о разработке исследователями университета штата Иллинойс нового типа литий-ионных аккумуляторов. Учёные заявили, что удельная мощность таких элементов питания составит до 1000 мВт/(см*мм), в то время как удельная мощность обычных литий-ионных батарей колеблется между 10-100 мВт/(см*мм). Были использованы именно такие единицы измерения, поскольку речь идёт о достаточно небольших структурах толщиной в десятки нанометров.

    Вместо плоских анода и катода, применяемых в традиционных Li-Ion батарей, учёные предложили использовать объёмные структуры: кристаллическую решётку из сульфида никеля на пористом никеле в качестве анода и литий-диоксид марганца на пористом никеле в качестве катода.

    Несмотря на все сомнения, вызванные отсутствием в первых пресс-релизах точных параметров новых аккумуляторов, а также не представленные до сих пор прототипы, новый тип батарей всё же реален. Подтверждением тому служат несколько научных статей на эту тему, опубликованных за последние два года. Тем не менее, если такие батареи и станут доступны для конечных потребителей, произойдёт это очень нескоро.

    Зарядка через экран

    Учёные и инженеры пытаются продлить жизнь наших гаджетов не только поиском новых типов аккумуляторов или увеличением их энергоэффективности, но и довольно необычными способами. Исследователи университета штата Мичиган предложили встроить прозрачные солнечные панели прямо в экран. Поскольку принцип работы таких панелей основан на поглощении ими солнечного излучения, чтобы сделать их прозрачными, учёным пришлось пойти на хитрость: материал панелей нового типа поглощает только невидимое излучение (инфракрасное и ультрафиолетовое), после чего фотоны, отражаясь от широких граней стекла, поглощаются узкими полосками солнечных панелей традиционного типа, находящихся по его краям.

    Главным препятствием для внедрения такой технологии является низкий КПД таких панелей — всего 1% против 25% традиционных солнечных панелей. Сейчас учёные ищут способы увеличить КПД хотя бы до 5%, но быстрого решения этой проблемы вряд ли стоит ожидать. К слову, похожую технологию недавно запатентовала компания Apple, но пока неизвестно, где именно в своих устройствах производитель расположит солнечные панели.

    До этого мы под словами «батарея» и «аккумулятор» мы подразумевали перезаряжаемый элемент питания, но некоторые исследователи считают, что в гаджетах вполне можно использовать одноразовые источники напряжения. В качестве батареек, которые могли бы работать без подзарядки или другого обслуживания несколько лет (а то и несколько десятков лет) учёные университета штата Миссури предложили использовать РИТЭГ — радиоизотопные термоэлектрические генераторы. Принцип действия РИТЭГ основан на преобразовании выделяющегося в процессе радиораспада тепла в электричество. Многим такие установки известны по использованию в космосе и труднодоступных местах на Земле, но в США миниатюрные радиоизотопные батарейки также применялись в кардиостимуляторах.

    Работа над улучшенным типом таких батарей ведётся с 2009 года и даже были показаны прототипы таких элементов питания. Но увидеть радиоизотопные батарейки в смартфонах в ближайшей перспективе мы не сможем: они дороги в производстве, и, к тому же, многие страны имеют строгие ограничения на производство и оборот радиоактивных материалов.

    В качестве одноразовых батареек также можно использовать и водородные элементы, но их в смартфонах использовать не получится. Водородные батареи расходуются довольно быстро: хотя ваш гаджет и будет работать от одного картриджа дольше, чем от одного заряда обычной батареи, их придётся периодически менять. Впрочем, это не мешает использовать водородные батареи в электромобилях и даже внешних аккумуляторах: пока это не массовые устройства, но уже и не прототипы. Да и компания Apple, по слухам, уже разрабатывает систему дозаправки картриджей водородом без их замены для использования в будущих iPhone.

    Идея о том, что на основе графена можно создать аккумулятор с высокой удельной ёмкостью, была выдвинута ещё в 2012 году. И вот, в начале этого года в Испании было объявлено о начале строительства компанией Graphenano завода по производству графен-полимерых аккумуляторов для электромобилей. Новый тип батарей почти в четыре раза дешевле в производстве, чем традиционные литий-полимерные аккумуляторы, имеет удельную ёмкость 600 Втч/кг, а зарядить такую батарею на 50 кВтч можно будет всего за 8 минут. Правда, как мы говорили в самом начале, для этого потребуется мощность около 1 МВт, поэтому подобный показатель достижим лишь в теории. Когда именно завод начнёт выпускать первые графен-полимерные батареи не сообщается, но вполне возможно, что среди покупателей его продукции будет Volkswagen. Концерн уже заявил о планах выпуска электромобилей с пробегом до 700 километров от одного заряда аккумуляторов к 2018 году.

    Что касается мобильных устройств, то пока применению в них графен-полимерных аккумуляторов мешают большие габариты таких батарей. Будем надеяться, что исследования в этой области продолжатся, ведь графен-полимерные аккумуляторы — один из наиболее перспективных типов аккумуляторов, которые могут появиться уже в ближайшие годы.

    Так всё же, почему, несмотря на весь оптимизм учёных и регулярно появляющиеся новости о прорывах в области сохранения электроэнергии, мы сейчас наблюдаем застой? В первую очередь, дело в наших завышенных ожиданиях, которые только подогреваются журналистами. Мы хотим верить, что вот-вот и произойдёт революция в мире аккумуляторов, и мы получим батарейку с зарядкой менее, чем за минуту, и практически неограниченным сроком службы, от которой современный смартфон с восьмиядерным процессором будет работать минимум неделю. Но таких прорывов, увы, не бывает. Вводу в массовое производство любой новой технологии предшествуют долгие годы научных исследований, испытаний образцов, разработка новых материалов и технологических процессов и другая работа, занимающая достаточно много времени. В конце концов, тем же литий-ионным аккумуляторам понадобилось около пяти лет, чтобы из инженерных образцов превратиться в готовые устройства, которые можно использовать в телефонах.

    Поэтому, нам остаётся только запасаться терпением и не воспринимать новости о новых элементах питания близко к сердцу. По крайней мере, пока не появятся новости об их запуске в массовое производство, когда не останется никаких сомнений о жизнеспособности новой технологии.

    С развитием технологий устройства делают более компактными, функциональными и мобильными. Заслуга такого совершенства аккумуляторные батареи , которые питают устройство. За все время изобретено много разных видов аккумуляторов, которые имеют свои преимущества и недостатки.

    Казалось бы, перспективная десяток лет назад технология литий ионных батарей, уже не отвечает требованиям современного прогресса для мобильных устройств. Они недостаточно мощны и быстро стареют при частом использовании или долгом хранении. С тех пор выведены подвиды литиевых батарей, такие как литий-железо-фосфатные, литий-полимерные и другие.

    Но наука не стоит на месте и ищет новые способы еще более лучшего сохранения электроэнергии. Так, например, изобретают другие типы батарей.

    Литий-серные батареи (Li-S)

    Литий серная технология позволяет получать батареи и энергоемкостью которая в два раза превышает за их родителей литий ионных. Без существенной потери в емкости такой тип батарей можно перезарядить до 1500 раз. Преимущество батареи скрывается в технологии изготовления и компоновки, где используется жидки катод с содержанием серы, при этом он отделен специальной мембраной от анода.

    Литий серные батареи можно использовать в достаточно широком диапазоне температур, а себестоимость их производства достаточно низка. Для массового применения надо устранить недостаток производства, а именно утилизация серы, которая вредна для экологии.

    Магниево-серные батареи (Mg/S)

    До последнего времени нельзя было объединить использования серы и магния в одной ячейке, но не так давно ученые смогли это сделать. Для их работы нужно было изобрести электролит, который бы работал с обоими элементами.

    Благодаря изобретению нового электролита за счет образования кристаллических частит, которые стабилизируют его. Увы, но опытный образец на данный момент не долговечен, и в серию такое батареи скорей всего не пойдут.

    Фторид-ионные батареи

    Для переноса зарядов между катодом и анодом в таких батареях используется анионы фтора. Этот тип аккумуляторов имеет емкость которые в десятки раз превышает за обычные литий ионные батареи, а также может похвастаться меньшей пожароопасностью. В основе электролита лежит лантане бария.

    Казалось бы, перспективное направление развитие батарей, но и оно не лишено недостатков очень серьезная преграда для массового использования - это работа аккумулятора только при очень высоких температурах.

    Литий-воздушные батареи (Li-O2)

    Вместе с техническими достижениями человечество уже задумывается о нашей экологии и ищет все более и более чистые источники энергии. В литий воздушных аккумуляторах вместо оксидов металла в электролите применяется углерод, который вступая в реакцию с воздухом создает электрический ток.

    Плотность энергии составляет до 10 кВтч/кг, что позволяет их использовать в электромобилях и мобильных устройствах. Ожидает скорое появления для конечного потребителя.

    Литий-нанофосфатные батареи

    Этот тип батарей является следующим поколение литий ионных батарей, среди преимуществ который является высокая скорость заряда и возможностью высокой отдачи тока. Для полного заряда, например, требуется коло 15 минут.

    Новая технология использования особых нано частиц, способных обеспечивать более быстрый поток ионов позволяют увеличить количество циклов заряда – разряда в 10 раз! Само собой, они имеют слабый саморазряд и отсутствует эффект памяти. Увы, но, широкому распространению мешает большой вес аккумуляторов и необходимость в специальной зарядке.

    Как вывод, можно сказать одно. Мы скоро будем наблюдать повсеместное использование электромобилей и гаджетов, которые смогут работать очень большое время без подзарядки.

    Электро новости:

    Автоконцерн BMW представил свой вариант электровелосипеда. Электрический велосипед BMW оснащен электромотором (250 Вт) Разгон до скорости до 25 км/ч.

    Берем сотню за 2,8 секунды на электроавтомобиле? По слухам, обновление P85D позволяет сократить время разгона с 0 до 100 километров в час с 3,2 до 2,8 секунды.

    Испанские инженеры разработали аккумулятор на котором можно проехать больше 1000 км! Она дешевле на 77% и заряжается всего за 8 минут



    Препараты